1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
forsale [732]
3 years ago
12

LC CIRCUIT: A 20.00-F capacitor is fully charged by a 100.00-V battery, then disconnected from the battery and connected in seri

es with a 0.280-mH inductor at t=0. Thus, the initial current 1-0. See circuit below after the charged capacitor is connected to the inductor. (a) What is the angular oscillation frequency o of the circuns (b) What is the maximum charge on the positive capacitor plate? (c) What is the energy stored in the capacitor at t - 0? (d) Using conservation of energy, find the current I when the charge reaches one-third the maximum charge. (e) Using conservation of energy, find the maximum current Imax 000000
Physics
1 answer:
klio [65]3 years ago
3 0

Answer:

(a) w=13.363\ rad/sec

(b) Q_m=2000\ coul

(c) E_{max}=100,000\ J

(d) I=25,197.63\ A

(e) I_{max}=26,726.12\ A

Explanation:

<u>LC Circuit</u>

The dynamics of an LC circuit is explained as the energy stored in the capacitor C in the form of an electrical field is transferred to the inductor L as a magnetic field. The energy stored in a capacitor is

\displaystyle E_c=\frac{CV^2}{2}

Where V is the potential between its plates where a charge Q is stored. The relation between them is

\displaystyle C=\frac{Q}{V}

The energy stored in an inductor of self-inductance L is

\displaystyle E_c=\frac{LI^2}{2}

Where I is the current flowing through the inductor. If we apply the principle of conservation of energy, the loss of electric energy in the capacitor will transform into magnetic energy in the inductor and vice-versa.

The angular frequency of oscillation of a LC circuit is

\displaystyle w=\sqrt{\frac{1}{LC}}

The question provides the following data

V_m=100\ V,\ C=20\ F,\ L=0.28\ mH=0.00028\ H

(a) The angular frequency is

\displaystyle w=\sqrt{\frac{1}{(0.00028)(20)}}

w=13.363\ rad/sec

(b) When the voltage is at maximum, the charge will also be maximum, its value can be computed solving for Q

\displaystyle C=\frac{Q_m}{V_m}

Q_m=V_mC=100(20)=2000

Q_m=2000\ coul

(c) At t=0, the voltage is at maximum, so the energy stored is

\displaystyle E_{max}=\frac{CV_m^2}{2}

\displaystyle E_{max}=\frac{20\ 100^2}{2}=100,000

E_{max}=100,000\ J

(d) If the charge reaches 1/3 of the initial value, it means 2/3 of the charge were transformed in magnetic energy. Let's call E_t to the transferred electric energy to magnetic energy, and E_1 to the remaining electric energy in the capacitor. Knowing Q_1=1/3Q_m

\displaystyle Q_1=\frac{2000}{3}=666.67\ coul

\displaystyle V_1=\frac{666.67}{20}=33.33\ V

\displaystyle E_1=\frac{(20)\ 33.33^2}{2}=11,111.11\ J

The energy transfered is

E_t=100,000-11,111.11=88,888.89\ J

We can compute the current solving for I in:

\displaystyle E_t=\frac{LI^2}{2}

\displaystyle I=\sqrt{\frac{2E_t}{L}}

Calculating I

\displaystyle I=\sqrt{\frac{2(88,888.89)}{0.00028}}

I=25,197.63\ A

(e) To find I_{max}, we'll assume all the electric energy is transformed to magnetic, so

\displaystyle I_{max}=\sqrt{\frac{2E_{max}}{L}}

\displaystyle I_{max}=\sqrt{\frac{2(100,000)}{0.00028}}

I_{max}=26,726.12\ A

You might be interested in
The speed of sound at room temperature (20 degrees Celsius) is 343 m/s. If the speed of sound in air increases about 0.60 m/s fo
stepan [7]

Answer:

36,67 degrees Celsius

Explanation:

The simplest way to approach this problem, given the information provided, is to simply start with the speed difference.

Goal: 353 m/s

Start: 343 m/s (at 20 degrees Celsius).

Difference: 10 m/s

Variation rate: 0.60 m/s/d (d = degree)

d = \frac{10 m/s}{0.60 m/s/d}  = 16,67 d

So, 16,67 degrees more than the starting point.

The temperature will then be 36.67 degrees Celsius, when the sound travels at the speed of 353 m/s.

4 0
3 years ago
A parachute falling to the ground.<br><br>​
butalik [34]

Answer:

a parachute falling to the ground is uniform

7 0
2 years ago
2. A powerful experimental sewing machine is powered by a mass-spring system. This
Alexus [3.1K]

We have that the Number of stitches per sec and he mass of  oscillation motion is mathematically given as

a) Nt=25stitches per sec

b) m=2.033e-5kg

<h3>Number of stitches per sec and he mass of  oscillation motion</h3>

Question Parameters:

This <u>sewing </u>machine is capable of stitching 1,500 stiches in one minute.

If the <em>sewing </em>machine has a spring constant of 0.5 N/m,

Generally the equation for the Number of stitches per sec  is mathematically given as

Nt=N/t

Therefore

Nt=1500/60

Nt=25stitches per sec

b)

Generally the equation for the Time t  is mathematically given as

T=2\pi\sqrt{\frac{m}{k}}

Therefore

0.04=2\pi\sqrt{\frac{m}{0.5}}\\\\m=\frac{0.5*0.04^2}{4\pi^2}

m=2.033e-5kg

For more information on Mass visit

brainly.com/question/15959704

7 0
2 years ago
A planet in elliptical orbit around a star moves from the point in its orbit furthest from the star (A) to the closest point (P)
Virty [35]

Answer:

Zero work done,since the body isn't acting against  or by gravity.

Explanation:

Gravitational force is usually  considered as work done against gravity (-ve) and work by gravity ( +ve ) and also When work isn't done by or against gravity work done in this case is zero.

Gravitational force can be define as that force that attracts a body to any other phyical body or system that have mass.

The planet been considered as our system in this case is assumed to have mass, and ought to demonstrate such properties associated with gravitational force in such system. Such properties include the return of every object been thrown up as a result of gravity acting downwards. The orbiting nature of object along an elliptical part when gravitational force isn't acting on the body and it is assumed to be zero.

6 0
3 years ago
Assignment: Can you identify various forces and instances in which electrostatic and magnetic forces occur​
serg [7]

Answer:

Magnetic force, attraction or repulsion that arises between electrically charged particles because of their motion. It is the basic force responsible for such effects as the action of electric motors and the attraction of magnets for iron. Electric forces exist among stationary electric charges; both electric and magnetic forces exist among moving electric charges. The magnetic force between two moving charges may be described as the effect exerted upon either charge by a magnetic field created by the other.

3 0
3 years ago
Other questions:
  • A block of density pb = 9.50 times 10^2 kg/m^3 floats face down in a fluid of density pt = 1.30 times 10^3 kg/m^3. The block has
    13·1 answer
  • A 10-kg disk-shaped flywheel of radius 9.0 cm rotates with a rotational speed of 320 rad/s. part a determine the rotational mome
    10·1 answer
  • How are the helium atoms in this model different from real helium atoms?
    14·2 answers
  • A cube with sides of area 32 cm2 contains a 35.9 nanoCoulomb charge. Find the flux of the electric field through the surface of
    11·1 answer
  • A copper wire of length 4.00 cm and radius 4.00 mm has a potential difference of 4.00 nV across the ends of the wire. Calculate
    10·1 answer
  • Because the block is not moving, the sum of the x components of the forces acting on the block must be zero. Find an expression
    12·1 answer
  • I will give BRAINLIEST.... ln the diagram below the system is in equilibrium. Determine the value of F1 in Newton​
    9·1 answer
  • The universe consists of many galaxies. Which choice correctly identifies our home galaxy and its type?
    15·1 answer
  • Light travels in a straight line at a constant speed of 3.0 x 10 8 m/s for 4.1
    15·1 answer
  • van object moving with uniform acceleration has a velocity of 10.0 cm/s in the positive x-direction when its x-coordinate is 3.0
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!