1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
forsale [732]
3 years ago
12

LC CIRCUIT: A 20.00-F capacitor is fully charged by a 100.00-V battery, then disconnected from the battery and connected in seri

es with a 0.280-mH inductor at t=0. Thus, the initial current 1-0. See circuit below after the charged capacitor is connected to the inductor. (a) What is the angular oscillation frequency o of the circuns (b) What is the maximum charge on the positive capacitor plate? (c) What is the energy stored in the capacitor at t - 0? (d) Using conservation of energy, find the current I when the charge reaches one-third the maximum charge. (e) Using conservation of energy, find the maximum current Imax 000000
Physics
1 answer:
klio [65]3 years ago
3 0

Answer:

(a) w=13.363\ rad/sec

(b) Q_m=2000\ coul

(c) E_{max}=100,000\ J

(d) I=25,197.63\ A

(e) I_{max}=26,726.12\ A

Explanation:

<u>LC Circuit</u>

The dynamics of an LC circuit is explained as the energy stored in the capacitor C in the form of an electrical field is transferred to the inductor L as a magnetic field. The energy stored in a capacitor is

\displaystyle E_c=\frac{CV^2}{2}

Where V is the potential between its plates where a charge Q is stored. The relation between them is

\displaystyle C=\frac{Q}{V}

The energy stored in an inductor of self-inductance L is

\displaystyle E_c=\frac{LI^2}{2}

Where I is the current flowing through the inductor. If we apply the principle of conservation of energy, the loss of electric energy in the capacitor will transform into magnetic energy in the inductor and vice-versa.

The angular frequency of oscillation of a LC circuit is

\displaystyle w=\sqrt{\frac{1}{LC}}

The question provides the following data

V_m=100\ V,\ C=20\ F,\ L=0.28\ mH=0.00028\ H

(a) The angular frequency is

\displaystyle w=\sqrt{\frac{1}{(0.00028)(20)}}

w=13.363\ rad/sec

(b) When the voltage is at maximum, the charge will also be maximum, its value can be computed solving for Q

\displaystyle C=\frac{Q_m}{V_m}

Q_m=V_mC=100(20)=2000

Q_m=2000\ coul

(c) At t=0, the voltage is at maximum, so the energy stored is

\displaystyle E_{max}=\frac{CV_m^2}{2}

\displaystyle E_{max}=\frac{20\ 100^2}{2}=100,000

E_{max}=100,000\ J

(d) If the charge reaches 1/3 of the initial value, it means 2/3 of the charge were transformed in magnetic energy. Let's call E_t to the transferred electric energy to magnetic energy, and E_1 to the remaining electric energy in the capacitor. Knowing Q_1=1/3Q_m

\displaystyle Q_1=\frac{2000}{3}=666.67\ coul

\displaystyle V_1=\frac{666.67}{20}=33.33\ V

\displaystyle E_1=\frac{(20)\ 33.33^2}{2}=11,111.11\ J

The energy transfered is

E_t=100,000-11,111.11=88,888.89\ J

We can compute the current solving for I in:

\displaystyle E_t=\frac{LI^2}{2}

\displaystyle I=\sqrt{\frac{2E_t}{L}}

Calculating I

\displaystyle I=\sqrt{\frac{2(88,888.89)}{0.00028}}

I=25,197.63\ A

(e) To find I_{max}, we'll assume all the electric energy is transformed to magnetic, so

\displaystyle I_{max}=\sqrt{\frac{2E_{max}}{L}}

\displaystyle I_{max}=\sqrt{\frac{2(100,000)}{0.00028}}

I_{max}=26,726.12\ A

You might be interested in
3. Una cuerda de guitarra tiene 60 cm de longitud y una masa de 0.05 kg de masa. Si se tensiona mediante una fuerza de 20 N. La
jok3333 [9.3K]

Answer:

f1 = 12.90 Hz

Explanation:

To calculate the first harmonic frequency you use the following formula for n = 1:

f_n=\frac{n}{2L}\sqrt{\frac{T}{M/L}}

f_1=\frac{1}{2L}\sqrt{\frac{T}{M/L}}    ( 1 )

It is necessary that the unist are in meters, then you have:

L: length of the string = 60cm = 0.6m

M: mass of the string = 0.05kg

T: tension on the string = 20 N

you replace the values of L, M and T in the expression (1) for getting f1:

f_1=\frac{1}{2(0.6m)}\sqrt{\frac{20N}{0.05kg/0.6m}}=12.90\ Hz

Hence, the first harmonic has a frequency of 12.90 Hz

4 0
3 years ago
Un montañero de 65kg de masa ha ascendido a la cima del Everest, la montaña más alta del mundo de 8848m de altura sobre el nivel
andrew-mc [135]

Answer:

El trabajo realizado para subir los últimos 500 metros es 318727,5 joules.

Explanation:

Por la definición de trabajo sabemos que el montañero debió contrarrestar trabajo causado por la gravedad terrestre. Si asumimos que el cambio de la altura es muy pequeño en comparación con el radio del planeta (6371 kilómetros vs. 0,5 kilómetros), entonces podemos considerar que la aceleración gravitacional es constante y la ecuación de trabajo (\Delta W), medido en joules, que reducida a:

\Delta W = m\cdot g\cdot \Delta z (1)

Donde:

m - Masa del montañero, medido en kilogramos.

g - Aceleración gravitacional, medida en metros por segundo al cuadrado.

\Delta z - Distancia vertical de ascenso del montañero, medida en metros.

Si tenemos que m = 65\,kg, g = 9,807\,\frac{m}{s^{2}} y \Delta z = 500\,m, entonces el trabajo realizado por el montañero para subir es:

\Delta W = (65\,kg)\cdot \left(9,807\,\frac{m}{s^{2}} \right)\cdot (500\,m)

\Delta W = 318727,5\,J

El trabajo realizado para subir los últimos 500 metros es 318727,5 joules.

7 0
3 years ago
A 30-cm-diameter, 1.2 kg solid turntable rotates on a 1.2-cm-diameter, 450 g shaft at a constant 33 rpm. When you hit the stop s
skelet666 [1.2K]

Answer:

frictional force = 0.52 N

Explanation:

diameter of turn table (D1) = 30 cm = 0.3 m

mass of turn table (M1) = 1.2 kg

diameter of shaft (D2) = 1.2 cm = 0.012 m

mass of shaft (M2) = 450 g = 0.45 kg

time (t) = 15 seconds

acceleration due to gravity (g) = 9.8 m/s^{2}

radius of turn table (R1) = 0.3 / 2 = 0.15 m

radius of shaft (R2) = 0.012 / 2 = 0.006 m

total moment of inertia (I) = moment of inertia of turn table + moment of inertia of shaft

I = 0.5(M1)(R1)^{2} + O.5 (M2)(R2)^{2}

I =  0.5(1.2)(0.15)^{2} + O.5 (0.45)(0.006)^{2}

I = 0.0135 + 0.0000081 = 0.0135081

ω₁ = 33 rpm = 33 x \frac{2π}{60} = 3.5 rad/s

α = -ω₁/t = -3.5 / 15 = -0.23 rad/s^{2}

torque = I x α

torque = 0.0135081 x (-0.23) = - 0.00311 N.m

torque = frictional force x R2

- 0.00311 = frictional force x 0.006

frictional force = 0.52 N

6 0
3 years ago
A student practicing for track ran 800 meter in 110 seconds. what was her speed?
adoni [48]
Her speed was 7.27 meters per second
3 0
3 years ago
Solve each of these problems, remembering to include formula, calculations, and units!
KATRIN_1 [288]

Answer:

I nEeD heLp

Explanation:

HelP

5 0
3 years ago
Other questions:
  • 2. Moving ocean water exerts a force of 375 N on a boat, causing the boat to move a distance of 34.7 m in 8.34 s. What power doe
    5·1 answer
  • When the posted speed limit is 70 mph, the minimum speed limit is ___________ mph.
    14·2 answers
  • Can Someone help me answer the question?
    14·1 answer
  • It's most critical that you'll be critical of Howard Gardner's seven intelligences if you
    14·1 answer
  • A sinusoidal wave travels along a string. The time for a particular point to move from maximum displacement to zero is 0.13 s. W
    13·1 answer
  • 9. A 30 cm ruler is found to have a center of mass of 15.6 cm. The percent error of the center of mass is _____, if the ruler is
    9·1 answer
  • Why can the Hubble space telescope make very detailed images in visible light
    5·1 answer
  • Water flows from one reservoir to another a height, 41 m below. A turbine (η=0.77) generates power from this flow. 1 m3/s passes
    5·1 answer
  • B) A non-inductive load takes a current of 15 A at 125 V. An inductor is then connected
    12·1 answer
  • ______is the amount of matter in an object. It does not change regardless
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!