Answer:
An unbalanced force means that there are more than one forces with different directions or magnitudes affecting the object. In this case, the vector addition of the forces should be done. The vector addition will result a net force. The object will move in the direction of the net force.
The new gravitational attraction will be 1/4 as much
Explanation:
The magnitude of the gravitational force between two objects is given by
where
is the gravitational constant
m1, m2 are the masses of the two objects
r is the separation between them
In this problem, the original force between the two objects is F, when they are separated by a distance r.
Later, the distance between the two objects is doubled, so the new distance is

Therefore, the new force will be

Therefore, the new force will be one-fourth as much.
Learn more about gravitational force:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly
Explanation:
Given parameters:
Mass of Neil Armstrong = 160kg
Gravitational pull of earth = 10N/kg
Moon's pull = 17% of the earth's pull
Unknown:
Difference between Armstrong's weight on moon and on earth.
Solution:
To find the weight,
Weight = mass x acceleration due to gravity = mg
Moon's gravitational pull = 17% of the earth's pull = 17% x 10 = 1.7N/kg
Weight on moon = 160 x 1.7 = 272N
Weight on earth = 160 x 10 = 1600N
The difference in weight = 1600 - 272 = 1328N
The weight of Armstrong on earth is 1328N more than on the moon.
Learn more:
Weight and mass brainly.com/question/5956881
#learnwithBrainly
To solve this problem we will apply the geometric concepts of displacement according to the description given. Taking into account that there is an initial displacement towards the North and then towards the west, therefore the speed would be:


Travel north 2mph and west to 1mph, then,


The route is done exactly the same to the south and east, so make this route twice, from the definition of speed we have to




Therefore the total travel time for the man is 1.15hour.
Answer:

Explanation:
As we know by radioactivity law

so here we will have


now we will have


now we also know that


