Answer:
See below.
Explanation:
Cubit is a unit of length based on the length of the forearm from the elbow to the tip of the middle finger and usually equal to about 18 inches (46 centimeters).
It is an ancient unit of length used in ancient Egypt and is also known as "ancient Egyptian royal cubit."
Other similar units of measurements are displayed in the image below. Thanks!
Answer:
There are four main ways of doing that :-
- Velocity
- Acceleration
- Momentum
- Kinetic energy
Hope it helps!
Answer:
Density of liquid = 4730 kg/m³
Atmospheric pressure on planet X = 8401.7 N/m²
Explanation:
Pressure, P = ρgh where ρ = density of liquid, g =9.8 m/s² and h = height of column at earth's surface = 2185 mm. Since P = atmospheric pressure, for mercury, P = ρ₁gh₁ where ρ₁ = 13.6 g/cm³ and h₁ = 760 mm
So, ρgh = ρ₁gh₁
ρ = ρ₁h₁/h = 13.6 g/cm³ × 760/2185 = 4.73 g/cm³ = 4730 kg/m³
The atmospheric pressure on planet X
P = ρg₁h₃ g₁ = g/4 and h₃ = 725 mm = 0.725 m
on planet X
P = ρg₁h₃ = (4730 kg/m³ × 9.8 m/s² × 0.725 m)/4 = 8401.7 N/m²
To solve this problem it is necessary to apply the concepts related to the kinematic equations of movement description.
From the definition we know that the speed of a body can be described as a function of gravity and height



Then applying the kinematic equation of displacement, the height can be written as

Re-arrange to find t,



Thus the calculation of the displacement would be subject to



Therefore the required distance must be 0.547m
Answer:
the initial speed of the arrow before joining the block is 89.85 m/s
Explanation:
Given;
mass of the arrow, m₁ = 49 g = 0.049 kg
mass of block, m₂ = 1.45 kg
height reached by the arrow and the block, h = 0.44 m
The gravitational potential energy of the block and arrow system;
P.E = mgh
P.E = (1.45 + 0.049) x 9.8 x 0.44
P.E = 6.464 J
The final velocity of the system after collision is calculated as;
K.E = ¹/₂mv²
6.464 = ¹/₂(1.45 + 0.049)v²
6.464 = 0.7495v²
v² = 6.464 / 0.7495
v² = 8.6244
v = √8.6244
v = 2.937 m/s
Apply principle of conservation of linear momentum to determine the initial speed of the arrow;

Therefore, the initial speed of the arrow before joining the block is 89.85 m/s