Visible light is the spectrum that humans can see ranging from 400-700 nm
Answer:
The explosive force experienced by the shell inside the barrel is 23437500 newtons.
Explanation:
Let suppose that shells are not experiencing any effect from non-conservative forces (i.e. friction, air viscosity) and changes in gravitational potential energy are negligible. The explosive force experienced by the shell inside the barrel can be estimated by Work-Energy Theorem, represented by the following formula:
(1)
Where:
- Explosive force, measured in newtons.
- Barrel length, measured in meters.
- Mass of the shell, measured in kilograms.
,
- Initial and final speeds of the shell, measured in meters per second.
If we know that
,
,
and
, then the explosive force experienced by the shell inside the barrel is:

![F = \frac{(1250\,kg)\cdot \left[\left(750\,\frac{m}{s} \right)^{2}-\left(0\,\frac{m}{s} \right)^{2}\right]}{2\cdot (15\,m)}](https://tex.z-dn.net/?f=F%20%3D%20%5Cfrac%7B%281250%5C%2Ckg%29%5Ccdot%20%5Cleft%5B%5Cleft%28750%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%29%5E%7B2%7D-%5Cleft%280%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%29%5E%7B2%7D%5Cright%5D%7D%7B2%5Ccdot%20%2815%5C%2Cm%29%7D)

The explosive force experienced by the shell inside the barrel is 23437500 newtons.
Answer:
+0.231 m/s
Explanation:
The problem can be solved by using the law of conservation of momentum. In fact, we have that the total momentum before the collision must be equal to the total momentum after the collision:

where we have
m1 = 245000 kg is the mass of the first car
m2 = 57500 kg is the mass of the second car
u1 = 0.513 m/s is the initial velocity of the first car
u2 = -0.125 m/s is the initial velocity of the second car
v = ? is the final velocity of the two cars together, after the collision
Solving the equation for v, we find

And the direction (positive sign) is the same as the initial direction of the first car.
The point of the orbit closest to Earth<span> is called perigee, while the point farthest from </span>Earth<span> is known as apogee</span>
Answer:
t=1.87s
b. 9.74
Explanation:
First to find time set an equation for angular velocity:

Now to find the angle:
