That would be mass.
Hope it helps!
The frontal lobe of the brain is not essential for driving a motor vehicle. The only time that the frontal lobe would be activated during driving would be when there is potential danger, for example a car swerving in front of you. The dorsal lateral prefrontal cortex is more essential for driving, as it is involved in judgment and decision making.
Food starts to move through your GI tract when you eat. When you swallow, your tongue pushes the food into your throat. A small flap of tissue, called the epiglottis, folds over your windpipe to prevent choking and the food passes into your esophagus.
Esophagus. Once you begin swallowing, the process becomes automatic. Your brain signals the muscles of the esophagus and peristalsis begins.
Lower esophageal sphincter. When food reaches the end of your esophagus, a ringlike muscle—called the lower esophageal sphincter —relaxes and lets food pass into your stomach. This sphincter usually stays closed to keep what’s in your stomach from flowing back into your esophagus.
Stomach. After food enters your stomach, the stomach muscles mix the food and liquid with digestive juices. The stomach slowly empties its contents, called chyme, into your small intestine.
Small intestine. The muscles of the small intestine mix food with digestive juices from the pancreas, liver, and intestine, and push the mixture forward for further digestion. The walls of the small intestine absorb water and the digested nutrients into your bloodstream. As peristalsis continues, the waste products of the digestive process move into the large intestine.
Large intestine. Waste products from the digestive process include undigested parts of food, fluid, and older cells from the lining of your GI tract. The large intestine absorbs water and changes the waste from liquid into stool. Peristalsis helps move the stool into your rectum.
Rectum. The lower end of your large intestine, the rectum, stores stool until it pushes stool out of your anus during a bowel movement.
Answer:
Organism with AABBCCDD genotype will produce only one type of gamete, ABCD and the organism having the genotype AaBbCcDd will produce 16 types of gametes.
This is a percentage of 3.1%
Explanation:
Answer:
initially by meiosis, then by mitosis( last choice)