You need to finish the question
Use Newton's second law to determine the acceleration being applied to the sled. There are three forces at work on the sled (its weight, the force normal to the ground, and friction) but two of them cancel, leaving friction as the only effective force. This vector is pointed in the opposite direction of the sled's movement, so if we take the direction of its movement to be the positive axis, we would find the acceleration due to the friction to be

Now we use the formula

to find the distance it travels. The sled comes to a rest, so
, and let's take the starting position
to be the origin. Then the distance traveled
is

The acceleration is 
Explanation:
We can answer this question by using Newton's second law, which states that the net force acting on an object is equal to the product between the mass of the object and its acceleration:

where
F is the force
m is the mass
a is the acceleration
In this problem, we have
m = 25 kg is the mass of the rider+bicycle
F = 400 N is the force
Solving for a, we find the acceleration:

Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly
Earthquakes can also occur far from the edges of plates, along faults. Faults<span> are cracks in the earth where sections of a plate (or two plates) are moving in different directions. Faults are caused by all that bumping and sliding the plates do. They are more common near the edges of the plates.</span>
The characteristics of the speed of the traveling waves allows to find the result for the tension in the string is:
T = 10 N
The speed of a wave on a string is given by the relationship.
v =
Where v es the velocty, t is the tension ang μ is the lineal density.
They indicate that the length of the string is L = 2.28 m and the pulse makes 4 trips in a time of t = 0.849 s, since the speed of the pulse in the string is constant, we can use the uniform motion ratio, where the distance traveled e 4 L
v =
v =
v =
v = 10.7 m / s
Let's find the linear density of the string, which is the length of the mass divided by its mass.
μ =
μ = 8.77 10⁻² kg / m
The tension is:
T = v² μ
Let's calculate
T = 10.7² 8.77 10⁻²
T = 1 0 N
In conclusion using the characteristics of the velocity of the traveling waves we can find the result for the tension in the string is:
T = 10 N
Learn more here: brainly.com/question/12545155