The 1kg ball would exert the smallest force.
As force = mass x gravity, this means that the smaller the mass (kg), the lesser the force.
When the mass is lighter (1kg):
Force = mass x gravity
Force = 1 x 9.8
Force = 9.8N
Compared to when the mass is heavier (10kg)
Force = mass x gravity
Force = 10 x 9.8
Force = 98N
Where this proves that the lighter the mass, the smaller the force exerted.
Acceleration of the ball is 
Explanation:
The acceleration of the ball can be found by using Newton's second law of motion, which states that the net force acting on an object is equal to the product between the mass of the object and its acceleration:

where
F is the net force
m is the mass
a is the acceleration
For the ball in this problem, we have
m = 0.50 kg (mass)
F = 25 N (force)
thereofre, the acceleration of the ball is

Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly
Answer:
coal tar is one of the product of coal
Gravitational potential energy can be described as m*g*h (mass times gravity times height).
Originally,
15kg * 9.8m/s^2 *0.3 m = 44.1 kg*m^2/s^2 = 44.1 Joules.
After it is moved to a 1m shelf:
15kg * 9.8m/s * 1 = 147 kg*m^2/s^2= 147 Joules.
To find how much energy was added, we subtract final energy from initial energy:
147 J - 44.1 J = 102.9 Joules.