Answer:
Atoms of tellurium (Te) have the greatest average number of neutrons equal to 76.
Explanation:
In the periodic table, Elements are represented with their respected symbols. Above the symbol is the elements atomic number which is equal to the number of protons in each atom. Below the symbol is the mass number of that element which is roughly equal to the sum of neutrons and protons of that atom.
To calculate the number of neutrons we can take the difference of Atomic number and mass number:
Number of neutrons = mass number - atomic number
<u>- Tin:</u>
Atomic number = 50
Mass number = 119
Number of neutrons = mass number - atomic number = 119 - 50
Number of neutrons = 69
<u>- Antimony(Sb):</u>
Atomic number = 51
Mass number = 122
Number of neutrons = mass number - atomic number = 122 - 51
Number of neutrons = 71
<u>- Tellurium(Te):</u>
Atomic number = 52
Mass number = 128
Number of neutrons = mass number - atomic number = 128 - 52
Number of neutrons = <u>76</u>
<u>- Iodine(I):</u>
Atomic number = 53
Mass number = 127
Number of neutrons = mass number - atomic number = 127 - 53
Number of neutrons = 74
Here, the greatest number of neutrons is for the atoms of Tellurium(Te).
The time taken is 1040 s.
<h3>What is speed?</h3>
The term speed refers to the rate at which the distance changes per unit time. This is why we define speed as the ratio of the distance to time for a body that is moving along a straight line.
Now;
We must first convert the distance to meters;
distance = 5.2km or 5200m
Speed = distance/time
time = distance/speed
time = 5200m/5 m/s
time = 1040 s
Learn more about speed:brainly.com/question/28224010
#SPJ1
(a)
consider the motion of the tennis ball. lets assume the velocity of the tennis ball going towards the racket as positive and velocity of tennis ball going away from the racket as negative.
m = mass of the tennis ball = 60 g = 0.060 kg
v₀ = initial velocity of the tennis ball before being hit by racket = 20 m/s
v = final velocity of the tennis ball after being hit by racket = - 39 m/s
ΔP = change in momentum of the ball
change in momentum of the ball is given as
ΔP = m (v - v₀)
inserting the above values
ΔP = (0.060) (- 39 - 20)
ΔP = - 3.54 kgm/s
hence , magnitude of change in momentum : 3.54 kgm/s
Answer:
true
Explanation:
Yes, it is true.
As the wattage is more than the prescribed wattage, it becomes overheated.
a. The disk starts at rest, so its angular displacement at time
is

It rotates 44.5 rad in this time, so we have

b. Since acceleration is constant, the average angular velocity is

where
is the angular velocity achieved after 6.00 s. The velocity of the disk at time
is

so we have

making the average velocity

Another way to find the average velocity is to compute it directly via

c. We already found this using the first method in part (b),

d. We already know

so this is just a matter of plugging in
. We get

Or to make things slightly more interesting, we could have taken the end of the first 6.00 s interval to be the start of the next 6.00 s interval, so that

Then for
we would get the same
.