1. Answer: components
A two dimensional vector can be divided into two parts called horizontal component and vertical component.
A three dimensional vector can be divided into three components: one along x-axis, one along y-axis and one along z-axis.
Hence, the vector parts that add up to the resultant are called components.
2. Answer: 5 miles.
The resultant distance along the straight line from the starting point to the end point would be the displacement.
The displacement would be equal to the magnitude of the hypotenuse formed in the right triangle.
Displacement, 
3. Answer: Scalar
A scalar quantity has only magnitude. For example, speed and distance are scalar quantities and can be normally added to find the total.
A vector quantity has both magnitude as well as direction. The components are summed according to vector addition rules. For example, velocity, acceleration, force etc.
Answer:
The answer to your question is va = 8 cm/s, vb = 12.5 cm/s, a = 9 cm/s²
Explanation:
Data
Ta = 0.125 s
Tb = 0.08 s
Δtab = 0.5 s
distance = 1 cm
Process
1.- Calculate va
va = 1/0.125 = 8 cm/s
vb = 1/0.08 = 12.5 cm/s
2.- Calculate Δv
Δv = 12.5 - 8
Δv = 4.5 cm/s
3.- Calculate acceleration
a = Δv / Δt
a = 4.5/0.5
a = 9 cm/s²
The speed of the block when the compression is 15 cm is 9.85 m/s.
The given parameters;
- <em>mass of the block, m = 2.4 kg</em>
- <em>height of the block, h = 5 m</em>
- <em>compression of the spring, x = 25 cm = 0.25 m</em>
The spring constant is calculated as follows;

The speed of the block when the compression is 15 cm can be determined by applying the principle of conservation of energy;

Thus, the speed of the block when the compression is 15 cm is 9.85 m/s.
Learn more here:brainly.com/question/14289286
Answer:
amplitude is commonly for transmitting messages with a radio carrier wave, the amplitude (signal strength) of the carrier wave is varied in proportion to that of the message signal. at the receiving end, the message signal is extracted from the modulated carrier by demodulation. frequency is the encoding of information in a carrier wave with instantaneous frequency. with digital data, the frequency of the carrier is shifted among a set of frequencies, using digits like 1 and 0