G = F(4x+5)/ 3x-2
C = (4x+5) (3x-2)/ 24C
F = 3x-2/C
Answer:
3
Step-by-step explanation:
lim(t→∞) [t ln(1 + 3/t) ]
If we evaluate the limit, we get:
∞ ln(1 + 3/∞)
∞ ln(1 + 0)
∞ 0
This is undetermined. To apply L'Hopital's rule, we need to rewrite this so the limit evaluates to ∞/∞ or 0/0.
lim(t→∞) [t ln(1 + 3/t) ]
lim(t→∞) [ln(1 + 3/t) / (1/t)]
This evaluates to 0/0. We can simplify a little with u substitution:
lim(u→0) [ln(1 + 3u) / u]
Applying L'Hopital's rule:
lim(u→0) [1/(1 + 3u) × 3 / 1]
lim(u→0) [3 / (1 + 3u)]
3 / (1 + 0)
3
Answer:
7(3 + 7)
Why:
7x3=21
7x7=49
Step-by-step explanation:
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>here's</em><em> your</em><em> solution</em>
<em> </em><em>=</em><em>></em><em> </em><em>in </em><em>first </em><em>figure</em><em> </em><em>,</em><em> </em><em>base </em><em>=</em><em> </em><em>5</em><em>.</em><em>5</em><em>,</em><em> </em><em>perpendicular</em><em> </em><em>=</em><em>7</em><em>.</em><em>8</em>
<em>=</em><em>></em><em> </em><em>h^</em><em>2</em><em> </em><em>=</em><em> </em><em>5</em><em>.</em><em>5</em><em>^</em><em>2</em><em> </em><em>+</em><em> </em><em>7</em><em>.</em><em>8</em><em>^</em><em>2</em>
<em>=</em><em>></em><em> </em><em>h^</em><em>2</em><em> </em><em>=</em><em> </em><em>3</em><em>0</em><em>.</em><em>2</em><em>5</em><em> </em><em>+</em><em> </em><em>6</em><em>0</em><em>.</em><em>8</em><em>4</em><em> </em>
<em>=</em><em>></em><em>h^</em><em>2</em><em> </em><em>=</em><em> </em><em>9</em><em>1</em><em>.</em><em>0</em><em>9</em>
<em>=</em><em>></em><em> </em><em>h </em><em>=</em><em> </em><em>√</em><em>9</em><em>1</em><em>.</em><em>0</em><em>9</em>
<em>=</em><em>></em><em> </em><em>h </em><em>=</em><em> </em><em>9</em><em>.</em><em>5</em>
<em> </em><em> </em><em>Both </em><em>figure</em><em> </em><em>are </em><em>congruent</em>
<em>enc </em><em>we </em><em>will </em><em>get </em><em>a </em><em>rectangle</em><em> </em><em>by </em><em>add </em><em>both </em>
<em>hope</em><em> it</em><em> helps</em>