1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rama09 [41]
2 years ago
9

Which quantity is a vector?

Physics
1 answer:
almond37 [142]2 years ago
8 0

Answer:

b

Explanation:

Vector, in physics, a quantity that has both magnitude and direction.

You might be interested in
Which of the following is the best definition of an isotope?
almond37 [142]
Option A looks like the best definition
4 0
3 years ago
How do dog whistles work?
Alchen [17]

<em>The sound it emits comes from what is known as the ultrasonic range, a pitch that is so high humans can't hear it. Dogs can hear these sounds, however, as can cats and other animals. Because of this, the dog whistle is a favored training tool, though it may not be for every dog parent.</em>

7 0
3 years ago
A hanging weight, with a mass of m1 = 0.365 kg, is attached by a string to a block with mass m2 = 0.825 kg as shown in the figur
morpeh [17]

The speed of the block after it has moved the given distance away from the initial position is 1.1 m/s.

<h3>Angular Speed of the pulley </h3>

The angular speed of the pulley after the block m1 fall through a distance, d, is obatined from conservation of energy and it is given as;

K.E = P.E

\frac{1}{2} mv^2 + \frac{1}{2} I\omega^2 = mgh\\\\\frac{1}{2} m_2v_0^2 + \frac{1}{2} \omega^2(m_1R^2_2 + m_2R_2^2) + \frac{1}{2} \omega^2( \frac{1}{2} MR_1^2 + \frac{1}{2} MR_2^2) = m_1gd- \mu_km_2gd\\\\\frac{1}{2} m_2v_0^2 + \frac{1}{2} \omega^2[R_2^2(m_1 + m_2)+ \frac{1}{2} M(R_1^2 + R_2^2)] = gd(m_1 - \mu_k m_2)\\\\

\frac{1}{2} m_2v_0 + \frac{1}{4} \omega^2[2R_2^2(m_1 + m_2) + M(R^2_1 + R^2_2)] = gd(m_1 - \mu_k m_2)\\\\2m_2v_0 + \omega^2 [2R_2^2(m_1 + m_2) + M(R^2_1 + R^2_2)] = 4gd(m_1 - \mu_k m_2)\\\\\omega^2 [2R_2^2(m_1 + m_2) + M(R^2_1 + R^2_2)] =  4gd(m_1 - \mu_k m_2) - 2m_2v_0^2\\\\\omega^2 = \frac{ 4gd(m_1 - \mu_k m_2) - 2m_2v_0^2}{2R_2^2(m_1 + m_2) + M(R^2_1 + R^2_2)} \\\\\omega = \sqrt{\frac{ 4gd(m_1 - \mu_k m_2) - 2m_2v_0^2}{2R_2^2(m_1 + m_2) + M(R^2_1 + R^2_2)}} \\\\

Substitute the given parameters and solve for the angular speed;

\omega = \sqrt{\frac{ 4(9.8)(0.7)(0.365 \ - \ 0.25\times 0.825) - 2(0.825)(0.82)^2}{2(0.03)^2(0.365 \ + \ 0.825)\  \ +\  \ 0.35(0.02^2\  + \ 0.03^2)}} \\\\\omega = \sqrt{\frac{3.25}{0.00214\ + \ 0.000455 } } \\\\\omega = 35.39 \ rad/s

<h3>Linear speed of the block</h3>

The linear speed of the block after travelling 0.7 m;

v = ωR₂

v = 35.39 x 0.03

v = 1.1 m/s

Thus, the speed of the block after it has moved the given distance away from the initial position is 1.1 m/s.

Learn more about conservation of energy here: brainly.com/question/24772394

5 0
2 years ago
Your grandmother enjoys creating pottery as a hobby. She uses a potter's wheel, which is a stone disk of radius R-0.520 m and ma
Lesechka [4]

Answer:

0.54454

104.00902 N

Explanation:

m = Mass of wheel = 100 kg

r = Radius = 0.52 m

t = Time taken = 6 seconds

\omega_f = Final angular velocity

\omega_i = Initial angular velocity

\alpha = Angular acceleration

Mass of inertia is given by

I=\dfrac{mr^2}{2}\\\Rightarrow I=\dfrac{100\times 0.52^2}{2}\\\Rightarrow I=13.52\ kgm^2

Angular acceleration is given by

\alpha=\dfrac{\tau}{I}\\\Rightarrow \alpha=\dfrac{\mu fr}{I}\\\Rightarrow \alpha=\dfrac{\mu 50\times 0.52}{13.52}

Equation of rotational motion

\omega_f=\omega_i+\alpha t\\\Rightarrow \omega_f=\omega_i+\dfrac{\mu (-50)\times 0.52}{13.52}t\\\Rightarrow 0=60\times \dfrac{2\pi}{60}+\dfrac{\mu (-50)\times 0.52}{13.52}\times 6\\\Rightarrow 0=6.28318-11.53846\mu\\\Rightarrow \mu=\dfrac{6.28318}{11.53846}\\\Rightarrow \mu=0.54454

The coefficient of friction is 0.54454

At r = 0.25 m

\omega_f=\omega_i+\dfrac{0.54454 (-50)\times 0.52}{13.52}6\\\Rightarrow 0=60\times \dfrac{2\pi}{60}+\dfrac{0.54454 f\times 0.25}{13.52}6\\\Rightarrow 2\pi=0.06041f\\\Rightarrow f=\dfrac{2\pi}{0.06041}\\\Rightarrow f=104.00902\ N

The force needed to stop the wheel is 104.00902 N

5 0
3 years ago
Which type of lens is shown in the picture below?<br> plane<br> refractional<br> concave
TiliK225 [7]
It is a concave lens

Have a nice day
8 0
3 years ago
Other questions:
  • A cliff jumper runs off a 15 m high cliff. Rocks extend 3.0 m past the cliff bottom. We can ignore air resistance.What is the mi
    14·1 answer
  • Well into the twentieth century, many scientists believed the ocean floor was
    5·1 answer
  • What is the role of the sun in the formation of clouds??
    13·1 answer
  • Suppose 500 joules of work is done to push an object in 15 seconds. Find the power for this situation
    12·1 answer
  • A horizontal desk surface measures 1.7 m by 1.0 m. If the Earth's magnetic field has magnitude 0.42 mT and is directed 68° below
    14·1 answer
  • Structures that trap light energy and perform photosynthesis
    13·1 answer
  • Check my work please
    9·1 answer
  • If a wave's frequency doubles in the same medium, what are the other
    7·1 answer
  • Ethan pushes a wooden box across a carpeted floor. Then he pushes the same box across a smooth marble floor. Why does Ethan find
    8·2 answers
  • Which force stops the car from moving?
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!