Aswer:
False, the values of the distance traveled and the displacement only coincide when the trayectorie is a straight line. Otherwise, the distance will always be greater than the offset.
Although these terms are used synonymously in other cases, they are totally different. Since the distance that a mobile travels is the equivalent of the length of its trajectory. Whereas, the displacement will be a vector magnitude.
<u>xXCherryCakeXx</u>.
Hi there!
Two possible answers are air resistance and friction.
Friction is caused by the rubbing of the surface of the ground and the surface of the object. Although ice doesn't have much friction, it can still cause friction.
Air resistance is caused by friction between the air and the object. As the object moves along a surface, it collides into many air particles; thus, it slows down.
Hope this helps.
Have an awesome day! :)
Answer:
B. d(low)=4d(high)
Explanation:
Frequency of a string can be written as;
f = v/2L
Where;
v = sound velocity
L = string length
Frequency can be further expanded to;
f = v/2L = (1/2L)√(T/u) ......1
Where;
m= mass,
u = linear density of string,
T = tension
p = density of string material
A = cross sectional area of string
d = string diameter
u = m/L .......2
m = pAL = p(πd^2)L/4 (since Area = (πd^2)/4)
f = (1/2L)√(T/u) = (1/2L)√(T/(m/L))
f = (1/2L)√(T/((p(πd^2)L/4)/L))
f = (1/2L)√(4T/pπd^2)
f = (1/L)(1/d)√(4T/pπ)
Since the length of the strings are the same, the frequency is inversely proportional to the string diameter.
f ~ 1/d
So, if
4f(low) = f(high)
Then,
d(low) = 4d(high)
Answer:
High energy waves have high amplitudes
Explanation:
The sound is perceived as louder if the amplitude increases, and softer if the amplitude decreases. ... The amplitude of a wave is related to the amount of energy it carries. A high amplitude wave carries a large amount of energy; a low amplitude wave carries a small amount of energy
Answer:
The energy which is produced by a battery is 101.1 kJ.
Explanation:
The expression for the energy in terms of voltage, current and time is as follows;
E=VIt
Here, V is the voltage, I is the current and t is the time.
It is given in the problem that a battery can provide a current of 1.80 A at 2.60 V for 6.00 hr.
Calculate the energy of the battery.
E=VIt
Convert time from hour int seconds.
t=6 hr
t=(6)(60)(60)
t=21600 s
Put I= 1.80 A, V= 2.60 V and t= 21600 s in the expression of energy.
E=(2.60)(1.80)(21600)
E= 101.1 kJ
Therefore, the energy which is produced by a battery is 101.1 kJ.