Answer:
a. P = nRTV
Explanation:
The question is incomplete. Here is the complete question.
"All of the following equations are statements of the ideal gas law except a. P = nRTV b. PV/T = nR c. P/n = RT/v d. R = PV/nT"
Ideal gas equation is an equation that describes the nature of an ideal gas. The molecule of an ideal gas moves at a particular velocity depending on the temperature. This gases collides with one another elastically. The collision that an ideal gas experience is a perfectly elastic collision.
The ideal gas equation is expressed as shown:
PV = nRT where:
P is the pressure of the gas
V is the volume
n is the number of moles
R is the ideal gas constant
T is the temperature.
Based on the formula given for an ideal gas, it can be inferred that the equation. P = nRTV is not a statement of an ideal gas equation.
The remaining option will results to an ideal gas equation if they are cross multipled.
Force required to move a block is 1.615 N
Given:
mass of block = m = 150 pounds = 68 kg
distance = d = 5 ft = 1.52 metres
time = t = 8 sec
To Find:
force required to move the block
Solution: Force is defined as product of mass and acceleration and it's unit is N or Newton.
Velocity = displacement/ time = 1.52 / 8 = 0.19 m/s
Acceleration = velocity/time = 0.19/8 =
0.023 m/s^2
Force = mass x acceleration = 68x0.023 = 1.615 N
Hence, force required to move the block is 1.615 N
Learn more about Force here:
brainly.com/question/12970081
#SPJ4
Answer:
d = 44.64 m
Explanation:
Given that,
Net force acting on the car, F = -8750 N
The mass of the car, m = 1250 kg
Initial speed of the car, u = 25 m/s
Final speed, v = 0 (it stops)
The formula for the net force is :
F = ma
a is acceleration of the car

Let d be the breaking distance. It can be calculated using third equation of motion as :

So, the required distance covered by the car is 44.64 m.
Answer:
160000000 kg.
Explanation:
p=mv
p=1.6x10^9
v=10m/s
rearrange and substitute:
(1.6x10^9)=m(10)
m=(1.6x10^9)/10
m= 1.6x10^8 kg.