Answer:
f' = 3665.51 Hz
Explanation:
given,
speed of the hawk = 24.7 m/s
frequency of screech emitted by the hawk = 3400 Hz
speed of sound = 331 m/s
By Doppler's effect

f' is the frequency received by the mouse
v is the speed of the sound
v_s is the speed of the hawk
now,

f' = 1.078 x 3400
f' = 3665.51 Hz
The frequency received by the stationary mouse is equal to 3665.51 Hz
<h2>Let us find the efficiency : Ans = 0.6</h2>
Explanation:
we know :
efficiency = output/input
We also know that :
output = m x g x h
where :
m = mass of body
g = acceleration due to gravity
h = height of body from floor
Thus, output = 0.6 x 10 x 1.2 = 7.2J
Similarly ,input = 0.6 x 10 x 2 = 12J
Thus efficiency = 7.2/12 = 0.6
Answer:
False.
Separation between channel is required when frequency division multiplexing (FDM) is used to aggregate several modulated channels together.
Explanation:
In Frequency Division Multiplexing (FDM), the total bandwidth is divided to a set of frequency bands that do not overlap. Each of these bands is a carrier of a different signal that is generated and modulated by one of the sending devices.
The frequency bands are separated from one another by strips of unused frequencies called the guard bands, to prevent overlapping of signals.
The modulated signals are combined together using a multiplexer (MUX) in the sending end. The combined signal is transmitted over the communication channel, thus allowing multiple independent data streams to be transmitted simultaneously. At the receiving end, the individual signals are extracted from the combined signal by the process of demultiplexing (DEMUX).
Answer:
5.0 m/s
Explanation:
The horizontal motion of the salmon is uniform, so the horizontal component of the salmon's velocity is constant and it is

where u is the initial speed and
. The horizontal distance travelled by the salmon is

where d = 1.95 m and t is the time needed to reach the final point.
Re-arranging for t,
(1)
Along the vertical direction, the equation of motion is

where:
y = 0.311 m is the final height reached by the salmon
h = 0 is the initial height
is the vertical component of the initial velocity of the salmon
is the acceleration of gravity
t is the time
Substituting t as found in eq.(1), we get the equation

and we can solve this formula for u, the initial speed of the salmon:

Refer to the diagram shown below.
m = the mass of the object
x = the distance of the object from the equilibrium position at time t.
v = the velocity of the object at time t
a = the acceleration of the object at time t
A = the amplitude ( the maximum distance) of the mass from the equilibrium
position
The oscillatory motion of the object (without damping) is given by
x(t) = A sin(ωt)
where
ω = the circular frequency of the motion
T = the period of the motion so that ω = (2π)/T
The velocity and acceleration are respectively
v(t) = ωA cos(ωt)
a(t) = -ω²A sin(ωt)
In the equilibrium position,
x is zero;
v is maximum;
a is zero.
At the farthest distance (A) from the equilibrium position,
x is maximum;
v is zero;
a is zero.
In the graphs shown, it is assumed (for illustrative purposes) that
A = 1 and T = 1.