Answer:
B. OSMOTIC PRESSURE WILL BE LOWER IN THE ARTERIOLE END OF THE CAPPILLARY BED COMPARED TO THE VENOUS END.
Explanation:
This is true for filtration to take place in the cappillary bed. Osmotic pressure is the net pressure that drives movement of fluid from the interstitial fluid back into the capillaries. Osmotic pressure increase favors reabsorption as water moves from region of higher water concentration in the interstitial fluid to the lower region of water concentration in the capillaries.
At the ends of a capillary bed, the difference in the hydrostatic and osmotic pressures provides a net filtration or reabsorption ratio. At the arteriole end of the capillary bed, hydrostatic pressure is greater than the osmotic pressure allowing movements of fluid to the interstitial fluid (filtration) while as the blood moves to the venous end, the osmotic pressure becomes greater than than hydrostatic pressure.
-- The energy of one photon is <em>(h · frequency of the light)</em>
' h ' is 6.626 × 10⁻³⁴ m²-kg/s ("Planck's Constant")
-- The question doesn't tell you the frequency of the light from the LED, but it tells you the wavelength, and
<em>Frequency = (speed of light) / (wavelength) </em>.
-- Now you have everything you need to calculate the <em>energy carried by one photon from the LED</em>.
-- The power of the light from the LED is 120 milliwatts. That's <em>0.120 Joule of energy per second</em>.
Now you should be able to find the number of photons per second. It's going to be <em>(0.120 Joule) / (energy carried by one photon)</em> .
When I scribbled it out on a scrap of scratch paper, I got 3.853 x 10³⁸ photons, but you'd better really check that out.
False only technology can show this not our naked eyes
Hope this helps and have a blessed day!
Both distance between and mass of the 2 objects.
The correct option is D.
Isotopic substances typically have unstable nuclei and that is why they disintegrate in order to become stable. During the process of disintegration, the nucleus of the unstable substance will be split into two smaller fragments, which are more stable that the parent isotope. This disintegration may also be accompanied by radiations.