Answer:
85.5 mmHg is the pressure of the gas sample when the valve is opened.
Explanation:
The combined gas equation is,

where,
= initial pressure of gas in container A = 165 mmHg
= final pressure of gas = ?
= initial volume of gas in container A= 
= final volume of gas = 135 mL + 117 mL = 252 mL
= initial temperature of gas in container A = 
= final temperature of gas = 
Now put all the given values in the above equation, we get:



85.5 mmHg is the pressure of the gas sample when the valve is opened.
3AgNO₃ + Na₃PO₄ → Ag₃PO₄ + 3NaNO₃
Explanation:
AgNO₃+Na₃(PO₄) → Ag₃(PO₄) + NaNO₃
To balance this chemical equation, we can adopt a simple mathematical approach through which we can establish simple and solvable algebraic equations.
aAgNO₃ + bNa₃PO₄ → cAg₃PO₄ + dNaNO₃
a, b, c and d are the coefficients needed to balance the equation.
Conserving Ag: a = 3c
N: a = d
O: 2a + 4b = 4c + 2d
Na: 3b = d
P: b = c
let a = 1; d = 1
b = 
c = 
Multiplying through by 3:
a = 3, b = 1, c = 1 and d = 3
3AgNO₃ + Na₃PO₄ → Ag₃PO₄ + 3NaNO₃
Learn more:
Balanced equation
brainly.com/question/5964324
#learnwithBrainly
Answer:
.025 ml 02
Explanation:
I made a pdf and pasted it in and etc