Answer: C. Definition of an Altitude
Step-by-step explanation:
Given: In triangle MNO shown below, segment NP is an altitude from the right angle.
Let ∠MNP=x
Then ∠PNO=90°-x
Therefore in triangle MNO,
∠MPN=∠NPO =90° [by definition of Altitude]
[Definition of altitude : A line which passes through a vertex of a triangle, and joins the opposite side forming right angles. ]
Now using angle sum property in ΔMNP
∠MNP+∠MPN+∠PMN=180°
⇒x+90°+∠PMN=180°
⇒∠PMN=180°-90°-x
⇒∠PMN=90°-x
Now, in ΔMNO and ΔPNO
∠PMN=∠PNO=90°-x
and ∠MPN=∠NPO =90° [by definition of altitude]
Therefore by AA similarity postulate, we have
ΔMNO ≈ ΔPNO
We're told that



where the last fact is due to the law of total probability:



so that
and
are complementary.
By definition of conditional probability, we have



We make use of the addition rule and complementary probabilities to rewrite this as


![\implies P(B)-[1-P(A\cup B)^C]=[1-P(B)]-P(A\cup B^C)](https://tex.z-dn.net/?f=%5Cimplies%20P%28B%29-%5B1-P%28A%5Ccup%20B%29%5EC%5D%3D%5B1-P%28B%29%5D-P%28A%5Ccup%20B%5EC%29)
![\implies2P(B)=2-[P(A\cup B)^C+P(A\cup B^C)]](https://tex.z-dn.net/?f=%5Cimplies2P%28B%29%3D2-%5BP%28A%5Ccup%20B%29%5EC%2BP%28A%5Ccup%20B%5EC%29%5D)
![\implies2P(B)=[1-P(A\cup B)^C]+[1-P(A\cup B^C)]](https://tex.z-dn.net/?f=%5Cimplies2P%28B%29%3D%5B1-P%28A%5Ccup%20B%29%5EC%5D%2B%5B1-P%28A%5Ccup%20B%5EC%29%5D)


By the law of total probability,


and substituting this into
gives
![2P(B)=P(A\cup B)+[P(B)-P(A\cap B)]](https://tex.z-dn.net/?f=2P%28B%29%3DP%28A%5Ccup%20B%29%2B%5BP%28B%29-P%28A%5Ccap%20B%29%5D)


Answer:
4 inches.
Step-by-step explanation:
The height of a rectangle is reduced by Shawna to a size of 2 inches.
The original width of the rectangle was 24 inches and the height was 12 inches.
If the ratio of width to height remains the same, then we can find the new width.
If the new width is x inches then, we can write

⇒ x = 4 inches. (Answer)