1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Romashka [77]
3 years ago
13

A heat pump is to be used to heat a house in winter and then reversed to cool the house in summer. The interior space is to be m

aintained at 20oC. Heat transfer through walls and roof is estimated to be χ = 0.525 kJ/sec per degree difference in temperature between inside and outside.
(a) In winter if the outside temperature is 5oC, what is the minimum power required to drive the heat pump?
(b) For the same power requirement, in summer what is the maximum outside temperature for which the reversed heat pump (air conditioner) can maintain an inside temperature of 20oC.
Engineering
2 answers:
DochEvi [55]3 years ago
3 0

Answer:

35.07\°C

Explanation:

To solve this exercise, it is necessary to apply the concepts of Performance Coefficient and work.

For part A, we have given the data on the outside temperature, which is 5°C. In this way the rate of heat loss in the room is given by

\dot{Q} = \xi \Delta T

where,

\xi = Heat transfer per second

\Delta T =Change in Temperature

We have then,

\dot{Q} = 0.525(20-5)

\dot{Q} = 7.8749kW

Now we can calculate the coefficient of performance which is given by,

COP = \frac{T}{\Delta T}

COP = \frac{20}{20-5}

COP = 19.53

By definition we know that the coefficient of performance of a pump is given by

COP = \frac{\dot{Q}}{W}

where,

\dot{Q} =Desired effect

W = Work input

Solving for the work input we have

W = \frac{\dot{Q}}{COP}

W = \frac{7.875}{19.33}

W = 0.407kW

For part B we consider \tau as the maximum temperature outside, therefore, calculating the heat rate we have

\dot{Q}=0.525*(T-293)Kj/S

\dot{Q} = 525*(T-293)W

Returning to the expression of the coefficient of performance we have to,

COP = \frac{\dot{Q}}{W}

0.407kW = \frac{525*(T-293)}{\frac{293}{T-293}}

(T-293)^2 = \frac{403*293}{525}

T^2-586T+85849=225

T^2-586T+85624=0

Solving the polynomial you have to

T= 308K = 35\°C

Therefore the maxium outside temperature is 35\°C

Tatiana [17]3 years ago
3 0

35.07 Answer:

Explanation:

You might be interested in
Set up the following characteristic equations in the form suited to Evanss root-locus method. Give L(s), a(s), and b(s) and the
Sunny_sXe [5.5K]

Answer:

attached below is the detailed solution and answers

Explanation:

Attached below is the detailed solution

C(iii) : versus the parameter C

The parameter C is centered in a nonlinear equation, therefore the standard locus will not apply hence when you use a polynomial solver the roots gotten would be plotted against C

4 0
4 years ago
Primary Creep: slope (creep rate) decreases with time
Igoryamba

Answer:

true

Explanation:

Creep is known as the time dependent deformation of structure due to constant load acting on the body.

Creep is generally seen at high temperature.

Due to creep the length of the structure increases which is not fit for serviceability purpose.

When time passes structure gain strength as the structure strength increases with time so creep tends to decrease.

When we talk about Creep rate for new structure the creep will be more than the old structure i.e. the creep rate decreases with time.

5 0
4 years ago
Charging method .Constant current method​
mina [271]

Answer:

There are three common methods of charging a battery; constant voltage, constant current and a combination of constant voltage/constant current with or without a smart charging circuit.

Constant voltage allows the full current of the charger to flow into the battery until the power supply reaches its pre-set voltage.  The current will then taper down to a minimum value once that voltage level is reached.  The battery can be left connected to the charger until ready for use and will remain at that “float voltage”, trickle charging to compensate for normal battery self-discharge.

Constant current is a simple form of charging batteries, with the current level set at approximately 10% of the maximum battery rating.  Charge times are relatively long with the disadvantage that the battery may overheat if it is over-charged, leading to premature battery replacement.  This method is suitable for Ni-MH type of batteries.  The battery must be disconnected, or a timer function used once charged.

Constant voltage / constant current (CVCC) is a combination of the above two methods.  The charger limits the amount of current to a pre-set level until the battery reaches a pre-set voltage level.  The current then reduces as the battery becomes fully charged.  The lead acid battery uses the constant current constant voltage (CC/CV) charge method. A regulated current raises the terminal voltage until the upper charge voltage limit is reached, at which point the current drops due to saturation.

4 0
3 years ago
What are the four causes of electrical faults?
Arada [10]

Answer:

Electrical faults are also caused due to human errors such as selecting improper rating of equipment or devices, forgetting metallic or electrical conducting parts after servicing or maintenance, switching the circuit while it is under servicing, etc.

Explanation:

6 0
3 years ago
Find E[x] when x is sum of two fair dice?
Ksenya-84 [330]

Answer:

When two fair dice are rolled, 6×6=36 observations are obtained.

P(X=2)=P(1,1)=

36

1

​

P(X=3)=P(1,2)+P(2,1)=

36

2

​

=

18

1

​

P(X=4)=P(1,3)+P(2,2)+P(3,1)=

36

3

​

=

12

1

​

P(X=5)=P(1,4)+P(2,3)+P(3,2)+P(4,1)=

36

4

​

=

9

1

​

P(X=6)=P(1,5)+P(2,4)+P(3,3)+P(4,2)+P(5,1)=

36

5

​

P(X=7)=P(1,6)+P(2,5)+P(3,4)+P(4,3)+P(5,2)+P(6,1)=

36

6

​

=

6

1

​

P(X=8)=P(2,6)+P(3,5)+P(4,4)+P(5,3)+P(6,2)=

36

5

​

P(X=9)=P(3,6)+P(4,5)+P(5,4)+P(6,3)=

36

4

​

=

9

1

​

P(X=10)=P(4,6)+P(5,5)+P(6,4)=

36

3

​

=

12

1

​

P(X=11)=P(5,6)+P(6,5)=

36

2

​

=

18

1

​

P(X=12)=P(6,6)=

36

1

​

Therefore, the required probability distribution is as follows.

Then, E(X)=∑X

i

​

⋅P(X

i

​

)

=2×

36

1

​

+3×

18

1

​

+4×

12

1

​

+5×

9

1

​

+6×

36

5

​

+7×

6

1

​

+8×

36

5

​

+9×

9

1

​

+10×

12

1

​

+11×

18

1

​

+12×

36

1

​

=

18

1

​

+

6

1

​

+

3

1

​

+

9

5

​

+

6

5

​

+

6

7

​

+

9

10

​

+1+

6

5

​

+

18

11

​

+

3

1

​

=7

E(X

2

)=∑X

i

2

​

⋅P(X

i

​

)

=4×

36

1

​

+9×

18

1

​

+16×

12

1

​

+25×

9

1

​

+36×

36

5

​

+49×

6

1

​

+64×

36

5

​

+81×

9

1

​

+100×

12

1

​

+121×

18

1

​

+144×

36

1

​

=

9

1

​

+

2

1

​

+

3

4

​

+

9

25

​

+5+

6

49

​

+

9

80

​

+9+

3

25

​

+

18

121

​

+4

=

18

987

​

=

6

329

​

=54.833

Then, Var(X)=E(X

2

)−[E(X)]

2

=54.833−(7)

2

=54.833−49

=5.833

∴ Standard deviation =

Var(X)

​

=

5.833

​

=2.415

4 0
3 years ago
Other questions:
  • Name two types of battery chargers that are used in mechanics
    14·1 answer
  • This problem demonstrates aliasing. Generate a 512-point waveform consisting of 2 sinusoids at 200 and 400-Hz. Assume a sampling
    8·1 answer
  • Sarah is developing a Risk Assessment for her organization. She is asking each department head how long can they be without thei
    6·1 answer
  • A shaft is made of an aluminum alloy having an allowable shear stress of τallow = 100 MPa. If the diameter of the shaft is 100 m
    13·2 answers
  • Output all combinations of character variables a, b, and c. If a = 'x', b = 'y', and c = 'z', then the output is: xyz xzy yxz yz
    14·1 answer
  • Two loads connected in parallel draw a total of 2.4 kW at 0.8 pf lagging from a 120-V rms, 60-Hz line. One load absorbs 1.5 kW a
    5·1 answer
  • How long will it take a Honda Civic to travel 118 miles if it is travelling at an average speed of 72 mph?
    6·1 answer
  • Which option identifies the type of engineering technician most likely to be involved in the following scenario?
    9·1 answer
  • Three-dimensional measuring references all of these EXCEPT:
    10·1 answer
  • What type of plans have to do with earth, soil, excavation, and location<br> of a house on a lot?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!