1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Darina [25.2K]
3 years ago
7

The wave function of a particle in a one-dimensional box of width L is Ψ(x) = Asin(πx/L). If we know the particle must be somewh

ere in the box, what must be the value of A? Express your answer in terms of L.

Physics
1 answer:
Harlamova29_29 [7]3 years ago
7 0

Answer: A = square root (2/L)

Explanation: find the attached file for explanation

You might be interested in
if researchers hit a sheet of metal with a yellow light and nothing happens, what color should the try next?​
Nataliya [291]

The photoelectric emission is possible if the wavelength of the incident light is less than that of yellow light

3 0
3 years ago
True or false: Balanced forces can change an object's direction?
slava [35]

The statement is false.  Balanced forces can NOT change the speed OR direction of an object's motion.  (See Newton's #1 law of motion.)

4 0
3 years ago
Read 2 more answers
A long metal cylinder with radius a is supported on an insulating stand on the axis of a long, hollow, metal tube with radius b.
bija089 [108]

a)

i) Potential for r < a: V(r)=\frac{\lambda}{2\pi \epsilon_0} ln(\frac{b}{a})

ii) Potential for a < r < b:  V(r)=\frac{\lambda}{2\pi \epsilon_0}  ln\frac{b}{r}

iii) Potential for r > b: V(r)=0

b) Potential difference between the two cylinders: V_{ab}=\frac{\lambda}{2\pi \epsilon_0} ln(\frac{b}{a})

c) Electric field between the two cylinders: E=\frac{\lambda}{2\pi \epsilon_0} \frac{1}{r}

Explanation:

a)

Here we want to calculate the potential for r < a.

Before calculating the potential, we have to keep in mind that the electric field outside an infinite wire or an infinite cylinder uniformly charged is

E=\frac{\lambda}{2\pi \epsilon_0 r}

where

\lambda is the linear charge density

r is the distance from the wire/surface of the cylinder

By integration, we find an expression for the electric potential at a distance of r:

V(r) =\int Edr = \frac{\lambda}{2\pi \epsilon_0} ln(r)

Inside the cylinder, however, the electric field is zero, because the charge contained by the Gaussian surface is zero:

E=0

So the potential where the electric field is zero is constant:

V=const.

iii) We start by evaluating the potential in the region r > b. Here, the net electric field is zero, because the Gaussian surface of radius r here contains a positive charge density +\lambda and an equal negative charge density -\lambda. Therefore, the net charge is zero, so the electric field is zero.

This means that the electric potential is constant, so we can write:

\Delta V= V(r) - V(b) = 0\\\rightarrow V(r)=V(b)

However, we know that the potential at b is zero, so

V(r)=V(b)=0

ii) The electric field in the region a < r < b instead it is given only by the positive charge +\lambda distributed over the surface of the inner cylinder of radius a, therefore it is

E=\frac{\lambda}{2\pi r \epsilon_0}

And so the potential in this region is given by:

V(r)=\int\limits^b_r {Edr} = \frac{\lambda}{2\pi \epsilon_0}  (ln(b)-ln(r))=\frac{\lambda}{2\pi \epsilon_0}  ln\frac{b}{r} (1)

i) Finally, the electric field in the region r < a is zero, because the charge contained in this region is zero (we are inside the surface of the inner cylinder of radius a):

E = 0

This means that the potential in this region remains constant, and it is equal to the potential at the surface of the inner cylinder, so calculated at r = a, which can be calculated by substituting r = a into expression (1):

V(a)=\frac{\lambda}{2\pi \epsilon_0} ln(\frac{b}{a})

And so, for r<a,

V(r)=\frac{\lambda}{2\pi \epsilon_0} ln(\frac{b}{a})

b)

Here we want to calculate the potential difference between the surface of the inner cylinder and the surface of the outer cylinder.

We have:

- Potential at the surface of the inner cylinder:

V(a)=\frac{\lambda}{2\pi \epsilon_0} ln(\frac{b}{a})

- Potential at the surface of the outer cylinder:

V(b)=0

Therefore, the potential difference is simply equal to

V_{ab}=V(a)-V(b)=\frac{\lambda}{2\pi \epsilon_0} ln(\frac{b}{a})

c)

Here we want to find the magnitude of the electric field between the two cylinders.

The expression for the electric potential between the cylinders is

V(r)=\int\limits^b_r {Edr} = \frac{\lambda}{2\pi \epsilon_0}  (ln(b)-ln(r))=\frac{\lambda}{2\pi \epsilon_0}  ln\frac{b}{r}

The electric field is just the derivative of the electric potential:

E=-\frac{dV}{dr}

so we can find it by integrating the expression for the electric potential. We find:

E=-\frac{d}{dr}(\frac{\lambda}{2\pi \epsilon_0} (ln(b)-ln(r))=\frac{\lambda}{2\pi \epsilon_0} \frac{1}{r}

So, this is the expression of the electric field between the two cylinders.

Learn more about electric fields:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

7 0
3 years ago
Neritic Sediments are deposited on the ocean floor in a sorted manor. In which order are the sediments ordered moving from the s
BaLLatris [955]
B <span> of Earth’s surface is covered by water. Very little or no light penetrates beyond a few hundred feet in water</span>
6 0
3 years ago
Where else could Snell’s law be useful in determining the path of a light ray in your everyday life?
Musya8 [376]

Answer:

Contact glasses.

Explanation:

-Anytime you put on a pair of glasses, or see light bend through a glass of water or a prism, this rule is in action.

-In short, Snell's law governs the angle by which electromagnetic radiation such as light refracts, or changes direction, as it passes from one material to another and slows down.

6 0
3 years ago
Other questions:
  • What happens when visible light strikes a surface?
    13·1 answer
  • What is physical quantity ? Give examples.​
    10·1 answer
  • You are trying to hear your friend give directions to new store in town. But from your distance (1 point) of 15 m you only hear
    10·1 answer
  • Help Please!!
    7·1 answer
  • Question:The greater the
    10·1 answer
  • True or false? Please help me !
    6·1 answer
  • A 5.00 kg crate is on a 21.0° hill.
    9·1 answer
  • Find the volume of a fish tank 105cm long 75cm wide and 80.5cm high using scientific notation
    8·1 answer
  • Atomic numbers for atoms _____ in increments of _____ as you move across the periodic table of elements
    12·1 answer
  • 'Suppose your hand moves upward by 0.50m while you are throwing the ball. The ball leaves your hand with an upward velocity of 2
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!