Answer:
The 1st Answer
Explanation:
Because kinetic energy is the energy which a body possesses by virtue of being in motion. So if the velocity of the object (cannonball in this case) decreases than so would the kinetic energy
Answer:

Explanation:
v = Velocity of the breeze = 4 m/s
w = Width of the valley = 5000 m
h = Height of the valley = 1000 m
Volumetric flow rate is given by

= Mass flow rate of pollutant = 25 g/s = 
Concentration is given by

The steady state concentration of pollutants in the valley, is
.
The force is gravitational because when something is falling is call gravitational
Answer:
P = 450 J
Explanation:
Given that,
Mass of a child, m = 18 kg
The vertical distance from the top to the bottom of the slide is 2.5 metres.
The Gravitational field strength = 10 N/kg
We need to find the decrease in gravitational potential energy of the child sliding from the top to the bottom of the slide.
The formula for the gravitational potential energy is given by :
P = mgh
Substituting all the values,
P = 18 kg × 10 m/s² × 2.5 m
P = 450 J
Hence, the decrease in gravitational potential energy is 450 J.
(a) The angular acceleration of the wheel is given by

where

and

are the initial and final angular speed of the wheel, and t the time.
In our problem, the initial angular speed is zero (the wheel starts from rest), so the angular acceleration is

(b) The wheel is moving by uniformly rotational accelerated motion, so the angle it covered after a time t is given by

where

is the initial angular speed. So, the angle covered after a time t=3.07 s is