First, solve for the acceleration of the car. You know the mass of the car and the braking force, so you can use the equation Force = Mass x Acceleration. This gives you 12,000 = 2,000 x A. Divide 12,000 by 2,000 to find the acceleration equal to 6 m/s^2. This is the rate that the car is slowing down at. Velocity is equal to accleration x time (rate x time), so you multiply 6 by the time of 5 seconds. This leaves you with a velocity of 30 m/s or about 67.1 mph.
A scientist can assess whether a pure niobium sample is responsible for contaminating the lab with radioactivity by testing the sample. By testing the niobium sample, a scientist can determine whether it has any other element.
Answer:
362.41 km/h
Explanation:
F = Force
m = Mass = 84 kg
g = Acceleration due to gravity = 9.81 m/s²
C = Drag coefficient = 0.8
ρ = Density of air = 1.21 kg/m³
A = Surface area = 0.04 m²
v = Terminal velocity
F = ma

Converting to km/h

The terminal velocity of the stone is 362.41 km/h
Nichrome wire. That's the stuff that toasters are made from. The resistance is pretty high, considering the diameter. 1 meter is at about the same guage as that listed below for copper is about 96 ohms.
Most of the time you are trying to use wire with the least resistance.
A meter of copper has a listed resistance of 0.024 ohms / meter. The wire is a 19 guage wire which makes it pretty thin.
===============
I'm not sure what you are asking. If want the resistance of something in terms of what would increase the resistance of the same material for both calculations then
Rule 1: It you decrease the wire diameter, you increase the resistance
Rule 2: If you increase the length of the wire, you increase the resistance.
Both rules assume you are using something like copper.