Ok i apologise for the messy working but I'll try and explain my attempt at logic
Also note i ignore any air resistance for this.
First i wrote the two equations I'd most likely need for this situation, the kinetic energy equation and the potential energy equation.
Because the energy right at the top of the swing motion is equal to the energy right in the "bottom" of the swing's motion (due to conservation of energy), i made the kinetic energy equal to the potential energy as indicated by Ek = Ep.
I also noted the "initial" and "final" height of the swing with hi and hf respectively.
So initially looking at this i thought, what the heck, there's no mass. Then i figured that using the conservation of energy law i could take the mass value from the Ek equation and use it in the Ep equation. So what i did was take the Ek equation and rearranged it for m as you can hopefully see. Then i substituted the rearranged Ek equation into the Ep equation.
So then the equation reads something like Ep = (rearranged Ek equation for m) × g (which is -9.81) × change in height (hf - hi).
Then i simplify the equation a little. When i multiply both sides by v^2 i can clearly see that there is one E on each side (at that stage i don't need to clarify which type of energy it is because Ek = Ep so they're just the same anyway). So i just canceled them out and square rooted both sides.
The answer i got was that the max velocity would be 4.85m/s 3sf, assuming no losses (eg energy lost to friction).
I do hope I'm right and i suppose it's better than a blank piece of paper good luck my dude xx
Question:
What is a disadvantage of using nuclear power to produce electricity?
Answer:
Disadvantages of Nuclear Power
The further implementations of nuclear power are limited because although nuclear energy does not produce CO2 the way fossil fuels do, there is still a toxic byproduct produced from uranium-fueled nuclear cycles: radioactive fission waste.
Answer:
The resistance that will provide this potential drop is 388.89 ohms.
Explanation:
Given;
Voltage source, E = 12 V
Voltage rating of the lamp, V = 5 V
Current through the lamp, I = 18 mA
Extra voltage or potential drop, IR = E- V
IR = 12 V - 5 V = 7 V
The resistance that will provide this potential drop (7 V) is calculated as follows:
IR = V

Therefore, the resistance that will provide this potential drop is 388.89 ohms.
Answer:
95 %
99.7 %
Explanation:
= 166 cm = Mean
= 5 cm = Standard deviation
a) 156 cm and 176 cm


From the empirical rule 95% of all values are within 2 standard deviation of the mean, so about 95% of men are between 156 cm and 176 cm.
b) 151 cm and 181 cm


The empirical rule tells us that about 99.7% of all values are within 3 standard deviations of the mean, so about 99.7% of men are between 151 cm and 181 cm.
When your head sticks out of the water the upthrust reduces as your head is no longer displacing water, and there is 0 resultant force so you float at that level. hope this helps, can i get brainliest please