Answer: 9000 kgm/s
Explanation:
Mass of car = 1500 kg
Speed by which car moves = 6 m/s. Momentum of the car = ?
Recall that:
Linear momentum = Mass x Speed
= 1500kg x 6m/s
= 9000 kgm/s
Thus, the linear momentum of the car is 9000 kgm/s
Answer:
If inflation is relatively lower than competitors, then the countries goods will become more attractive and demand will rise. Lower inflation tends to increase the value of the currency in the long term.
Explanation:
Answer:
linear charge density = -9.495 ×
C/m
Explanation:
given data
revolutions per second = 1.80 ×
radius = 1.20 cm
solution
we know that when proton to revolve around charge wire then centripetal force is require to be in orbit of radius around provide by electric force
so
- q × E = m × w² × r ..................1
- 9 ×
×
q = m × w² × r ............2
and w =
w =
w = 1.80 ×
×
w = 11304000 rad/s
so here from equation 2
- 9 ×
×
1.80 ×
= 1.672 ×
× 11304000² × 0.0120
linear charge density = -9.495 ×
C/m
During either one, the sun, moon, and Earth are lined up in the same straight line. The difference is whether the moon or the Earth is the one in the "middle".
According to the <u>Third Kepler’s Law of Planetary motion</u> “<em>The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”.</em>
In other words, this law states a relation between the orbital period
of a body (moon, planet, satellite) orbiting a greater body in space with the size
of its orbit.
This Law is originally expressed as follows:
<h2>

(1)
</h2>
Where;
is the Gravitational Constant and its value is 
is the mass of Jupiter
is the semimajor axis of the orbit Io describes around Jupiter (assuming it is a circular orbit, the semimajor axis is equal to the radius of the orbit)
If we want to find the period, we have to express equation (1) as written below and substitute all the values:
<h2>

(2)
</h2>
Then:
<h2>

(3)
</h2>
Which is the same as:
<h2>

</h2>
Therefore, the answer is:
The orbital period of Io is 42.482 h