Answer:
C. with 3000 successes of 5000 cases sample
Step-by-step explanation:
Given that we need to test if the proportion of success is greater than 0.5.
From the given options, we can see that they all have the same proportion which equals to;
Proportion p = 30/50 = 600/1000 = 0.6
p = 0.6
But we can notice that the number of samples in each case is different.
Test statistic z score can be calculated with the formula below;
z = (p^−po)/√{po(1−po)/n}
Where,
z= Test statistics
n = Sample size
po = Null hypothesized value
p^ = Observed proportion
Since all other variables are the same for all the cases except sample size, from the formula for the test statistics we can see that the higher the value of sample size (n) the higher the test statistics (z) and the highest z gives the strongest evidence for the alternative hypothesis. So the option with the highest sample size gives the strongest evidence for the alternative hypothesis.
Therefore, option C with sample size 5000 and proportion 0.6 has the highest sample size. Hence, option C gives the strongest evidence for the alternative hypothesis
Answer:
15/32
Step-by-step explanation:
Step-by-step explanation: What they mean is if you were to say put all that data onto a graph, any kind of graph. What graph would you chose, and why? How you would work through this kind of problem, or at least how I would approach it weight out the pros and cons of each graph, or put some data on different graphs and see what works best. On the contrary if you have a rough idea of how each graph would look like you would just chose the one you think conveys the information best. I think they're is a best answer, but no wrong answer, you can make an argument for most graphs if you try, so just chose the one you think is best, and write your reasoning.
Check the picture below.
make sure your calculator is in Degree mode.
Find the prime factorization of 54
54 = 2 × 3 × 3 × 3
Find the prime factorization of 99
99 = 3 × 3 × 11
To find the GCF, multiply all the prime factors common to both numbers:
Therefore, GCF = 3 × 3
GCF = 9