Answer:
See explanation
Explanation:
The equation of the reaction is;
C3H8 + 5O2 ----> 3CO2 + 4H2O
Number of moles of C3H8 = 132.33g/44g/mol = 3 moles
1 mole of C3H8 yields 3 moles of CO2
3 moles of C3H8 yields 3 × 3/1 = 9 moles of CO2
Number of moles of oxygen = 384.00 g/32 g/mol = 12 moles
5 moles of oxygen yields 3 moles of CO2
12 moles of oxygen yields 12 × 3/5 = 7.2 moles of CO2
Hence C3H8 is the limiting reactant.
Mass of CO2 produced = 9 moles of CO2 × 44 g/mol = 396 g of CO2
1 moles of C3H8 yields 4 moles of water
3 moles of C3H8 yields 3 × 4/1 = 12 moles of water
Mass of water = 12 moles of water × 18 g/mol = 216 g of water
b) Actual yield = 269.34 g
Theoretical yield = 396 g
% yield = actual yield/theoretical yield × 100/1
% yield = 269.34 g /396 g × 100
% yield = 68%
Answer:
Down below
Explanation:
The following uses nickel(II) chloride
2AgNO3(aq) + NiCl2(aq) ==> Ni(NO3)2(aq) + 2AgCl(s) Molecular
Let us calculate the structure of the electric shells of the Al atom. It has an atomic number of 13, so it has 13 electrons. The first 2 go to the first hell. The next 8 need to go to the second shell and the last 3 ones would go to the outermost shell. The outer shell, that is the most important one for chemical reactions, has thus 3 electrons. An atom always tries to have a completed outer shell (with either 2 or 8 atoms). It is easier for a cell to have a charge of +3 than a charge of -5 (smaller absolute value) and thus the Aluminum atom will try to get rid of the 3 electrons. In this process, it loses negative charge thus it will become positively charged. Hence, the correct answer is that it will prefer to lose 3 electrons and become positively charged.
Is volume one of your answers?
342.15 g/mol is the molar mass of Al2(SO4)3 Aluminium sulfate, This is what I found I hope this is right. Hope this helps;)