Answer : The [α] for the solution is, -118.8
Explanation :
Enantiomeric excess : It is defined as the difference between the percentage major enantiomer and the percentage minor enantiomer.
Mathematically,

Given:
% major enantiomer = 86 %
% minor enantiomer = 14 %
Putting values in above equation, we get:


Now we have to calculate the [α] for the solution.
![[\alpha]=\text{Enantiomer excess}\times [\alpha]_{Pure}](https://tex.z-dn.net/?f=%5B%5Calpha%5D%3D%5Ctext%7BEnantiomer%20excess%7D%5Ctimes%20%5B%5Calpha%5D_%7BPure%7D)
![[\alpha]=0.72\times -165](https://tex.z-dn.net/?f=%5B%5Calpha%5D%3D0.72%5Ctimes%20-165)
![[\alpha]=-118.8](https://tex.z-dn.net/?f=%5B%5Calpha%5D%3D-118.8)
Thus, the [α] for the solution is, -118.8