1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexandr402 [8]
3 years ago
13

Part 1: A rope has one end tied to a vertical support. You hold the other end so that the rope is horizontal. If you move the en

d of the rope back and forth with a frequency of 4 Hz, the transverse wave you produce has a wavelength of 0.5 m. What is the speed of the wave in the rope?a. 0.13 m/sb. 8 m/sc. 2 m/sd. 4 m/s
Physics
1 answer:
Blizzard [7]3 years ago
5 0

Answer:

c. 2 m/s

Explanation:

The speed of a wave is given by:

v=f \lambda

where

v is the speed of the wave

f is the frequency

\lambda is the wavelength

For the wave in this problem, we have

f = 4 Hz is the frequency

\lambda = 0.5 m is the wavelength

So, the speed of the wave is

v=(4 Hz)(0.5 m)=2 m/s

You might be interested in
Calculate the average speed in metres per second from Glasgow to Edinburgh
mariarad [96]
This is the same question as the one previously but with more details, so I will just use my previous answer.

1800 to 1820 is 20 minutes.1830 to 1838 is 8 minutes.1840 to 1905 is 25 minutes.
The total time travelled is 20+8+25 = 53 minutes = 3180 seconds.
The distance between Glasgow and Edinburgh is 28 + 12 + 34 = 74 km = 74000 m.

So, the average speed is 74000m/3180s = 23.27 m/s (4 s.f.)
5 0
3 years ago
A 950-kg car strikes a huge spring at a speed of 22m/s (fig. 11-54), compressing the spring 5.0m. (a) what is the spring stiffne
alukav5142 [94]

(a) The spring stiffness constant of the spring is 18,392 N/m.

(b) The time the car was in contact with the spring before it bounces off in the opposite direction is 0.23 s.

<h3>Kinetic energy of the car</h3>

The kinetic energy of the car is calculated as follows;

K.E = ¹/₂mv²

K.E = ¹/₂ x 950 x 22²

K.E = 229,900 J

<h3>Stiffness constant of the spring</h3>

The stiffness constant of the spring is calculated as follows;

K.E =  U = ¹/₂kx²

k = 2U/x²

k = (2 x 229,900)/(5)²

k = 18,392 N/m

<h3>Force exerted on the spring</h3>

F = kx

F = 18,392 x 5

F = 91,960 N

<h3>Time of impact</h3>

F = mv/t

t = mv/F

t = (950 x 22)/(91960)

t = 0.23 s

Learn more about spring constant here: brainly.com/question/1968517

#SPJ4

3 0
1 year ago
What quantity of heat is needed to convert 1 kg of ice at -13 degrees C to steam at 100 degrees C?
Effectus [21]

Answer:

Heat energy needed = 3036.17 kJ

Explanation:

We have

     heat of fusion of water = 334 J/g

     heat of vaporization of water = 2257 J/g

     specific heat of ice = 2.09 J/g·°C

     specific heat of water = 4.18 J/g·°C

     specific heat of steam = 2.09 J/g·°C

Here wee need to convert 1 kg ice from -13°C to vapor at 100°C

First the ice changes to -13°C from 0°C , then it changes to water, then its temperature increases from 0°C to 100°C, then it changes to steam.

Mass of water = 1000 g

Heat energy required to change ice temperature from -13°C to 0°C

          H₁ = mcΔT = 1000 x 2.09 x 13 = 27.17 kJ

Heat energy required to change ice from 0°C to water at 0°C

          H₂ = mL = 1000 x 334 = 334 kJ

Heat energy required to change water temperature from 0°C to 100°C  

          H₃ = mcΔT = 1000 x 4.18 x 100 = 418 kJ    

Heat energy required to change water from 100°C to steam at 100°C  

          H₄ = mL = 1000 x 2257 = 2257 kJ    

Total heat energy required

          H = H₁ +  H₂ + H₃ + H₄ = 27.17 + 334 + 418 +2257 = 3036.17 kJ

Heat energy needed = 3036.17 kJ

5 0
3 years ago
10 minutes on the stove, the water molecules in the pot are in two different
DaniilM [7]

Answer:

20 molcues

Explanation:

8 0
3 years ago
If an ideal gas does not exist then why laws were stated?
mihalych1998 [28]
That is because it is impossible to create a law for the behavior of every single different gas, so creating laws for an ideal gas helps us understand the basic nature of gasses which might or might not differ slightly or a lot. By understanding how an ideal gas works, we can understand how a normal gas works.
5 0
3 years ago
Other questions:
  • The ideal mechanical advantage of an inclined plane is 3.5, and its efficiency is 0.6. What is the mechanical advantage of the i
    7·1 answer
  • If an employee gets injured when while preparing food, bandages should be:
    13·1 answer
  • Your heart pumps blood at a pressure of 100 mmHg and flow speed of 60 cm/s. At your brain, the blood enters capillaries with suc
    14·1 answer
  • Develop a power point presentation to which you explain how convection works by using ocean water as an example. In your present
    13·1 answer
  • The force of gravity on a 1 kg object on the Earth's surface is approximately 9.8 N. For the same object in low-earth orbit arou
    12·1 answer
  • Which statement about speed and/or velocity is true?
    12·2 answers
  • A rock band playing an outdoor concert produces sound at 120 dB 5.0 m away from their single working loudspeaker. What is the so
    5·1 answer
  • 18 POINTS!!
    5·1 answer
  • Is it true or false that it is never sensible to calculate more than 100% of a number​
    8·1 answer
  • A car is moving at 14 m/s. After 30 s, its speed inncreased to 20 m/s. What is the acceleration over time
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!