1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pshichka [43]
3 years ago
14

A 5.00 kilogram block slides along a horizontal,frictionless surface at 10.0 meters per second. for 4.00 seconds. The magnitude

of the blocks momentum is ?
a. 200 Kg m/s
b. 50.0 Kg m/s
c. 20.0 Kg m/s
d. 12.5 Kg m/s
Physics
1 answer:
finlep [7]3 years ago
5 0
In this question a lot of information's are provided. Among the information's provided one information and that is the time of 4 seconds is not required for calculating the answer. Only the other information's are required.
Mass of the block that is sliding = 5.00 kg
Distance for which the block slides = 10 meters/second
Then we already know that
Momentum = Mass * Distance travelled
                   = (5 * 10) Kg m/s
                   = 50 kg m/s
So the magnitude of the blocks momentum is 50 kg m/s. The correct option among all the given options is option "b".
You might be interested in
Why do astronomers use spectroscopes to analyze light from distant objects?
RoseWind [281]
Spectroscopy — the use of light from a distant object to work out the object is made of — could be the single-most powerful tool astronomers use, says Professor Fred Watson from the Australian Astronomical Observatory. ... "It lets you see the chemicals being absorbed or emitted by the light source.
7 0
3 years ago
Mention one life application on density ​
kow [346]

One well-known application of density is determining whether or not an object will float on water. If the object's density is less than the density of water, it will float; if its density is less than that of water, it will sink.In fact, submarines dive below the surface of the water by emptying their ballast tanks

5 0
2 years ago
Can kintic friction affect mechanical energy
Nesterboy [21]
Yes. Kinetic energy is a form of mechanical energy and friction will turn that kinetic energy into heat.
3 0
3 years ago
Consider the following True/False statements:
Ainat [17]

Answer:

6) False

7) True

8) False

9) False

10) False

11) True

12) True

13) True

14) True

Explanation:

The spacing between two energy levels in an atom shows the energy difference between them. Clearly, B has a greater value of ∆E compared to A. This implies that the wavelength emitted by B is greater than A while B will emit fewer, more energetic photons.

When atoms jump from lower to higher energy levels, photons are absorbed. The kinetic energy of the incident photon determines the frequency, wavelength and colour of light emitted by the atom.

The energy level to which an atom is excited is determined by the kinetic energy of the incident electron. As the voltage increases, the kinetic energy of the electron increases, the further the atom is from the source of free electrons, the greater the required kinetic energy of free electron. When electrons are excited to higher energy levels, they must return to ground state.

4 0
3 years ago
what equastion do you use to solve Riders in a carnival ride stand with their backs against the wall of a circular room of diame
Hitman42 [59]

Answer:

μsmín = 0.1

Explanation:

  • There are three external forces acting on the riders, two in the vertical direction that oppose each other, the force due to gravity (which we call weight) and the friction force.
  • This friction force has a maximum value, that can be written as follows:

       F_{frmax} = \mu_{s} *F_{n} (1)

       where  μs is the coefficient of static friction, and Fn is the normal force,

       perpendicular to the wall and aiming to the center of rotation.

  • This force is the only force acting in the horizontal direction, but, at the same time, is the force that keeps the riders rotating, which is the centripetal force.
  • This force has the following general expression:

       F_{c} =  m* \omega^{2} * r (2)

       where ω is the angular velocity of the riders, and r the distance to the

      center of rotation (the  radius of the circle), and m the mass of the

      riders.

      Since Fc is actually Fn, we can replace the right side of (2) in (1), as

      follows:

     F_{frmax} = m* \mu_{s} * \omega^{2} * r (3)

  • When the riders are on the verge of sliding down, this force must be equal to the weight Fg, so we can write the following equation:

       m* g = m* \mu_{smin} * \omega^{2} * r (4)

  • (The coefficient of static friction is the minimum possible, due to any value less than it would cause the riders to slide down)
  • Cancelling the masses on both sides of (4), we get:

       g = \mu_{smin} * \omega^{2} * r (5)

  • Prior to solve (5) we need to convert ω from rev/min to rad/sec, as follows:

      60 rev/min * \frac{2*\pi rad}{1 rev} *\frac{1min}{60 sec} =6.28 rad/sec (6)

  • Replacing by the givens in (5), we can solve for μsmín, as follows:

       \mu_{smin} = \frac{g}{\omega^{2} *r}  = \frac{9.8m/s2}{(6.28rad/sec)^{2} *2.5 m} =0.1 (7)

5 0
2 years ago
Other questions:
  • What healthy snack can provide protein after physical activity?
    5·1 answer
  • Where is the center of mass of the Earth-Moon system? The radius of the Earth is 6378 km and the radius of the Moon is 1737 km.
    6·1 answer
  • A net force xf acts on an object. what does this mean?
    12·1 answer
  • Mrs. Smith walks from her house 11.2 m to the grocer. Then she walks from the grocer 5.7 m to the pet store. Then she walks 32.7
    14·1 answer
  • Physical Science
    9·1 answer
  • The part of the computer that provides access to the internet is
    13·1 answer
  • Elements that typically give up electrons
    12·1 answer
  • How are element and compound are alike and different?
    6·1 answer
  • A boy pulls with a 92.5 N force on the handle of a 27.5 kg wagon while the handle makes an angle of 35.0 degrees with the horizo
    11·1 answer
  • 2. What is the mass of an object if it accelerates at 3 m/s2 and has a force of 1 N?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!