Answer:
The value is 
Explanation:
From the question we are told that
The relationship between the number of whooping cranes and the number of decades is 
The exponential relationship is
Now from the given equation we have that


So comparing this equation obtained an the given exponential relationship we have that




Let u = the speed of the car at the instant when braking begins.
The braking distance is s = 62.3 m, the acceleration is a = -5.9 m/s², and the braking duration is t = 4.15 s.
Use the formula s = ut + (1/2)at² to obtain
(u m/s)*(4.15 s) + 0.5*(-5.9 m/s²)*(4.5 s)² = (62.3 m)
4.15u = 62.3 + 50.8064 = 113.1064
u = 27.2546 m/s
Let v m/s be the speed with which the car strikes the tree.
Then
v = 27.2546 - 5.9*4.15
= 2.7696 m/s
Answer: 2.77 m/s (nearest hundredth)
Answer: Impulse = 4 kgm/s
Explanation:
From the question, you're given the following parameters:
Momentum P1 = 12 kgm/s
Momentum P2 = 16 kgm/s
Time t = 0.2 s
According to second law of motion,
Force F = change in momentum ÷ time
That is
F = (P2 - P1)/t
Cross multiply
Ft = P2 - P1
Where Ft = impulse
Substitute P1 and P2 into the formula
Impulse = 16 - 12 = 4 kgm/s
The magnitude of the impulse is therefore 4 kgm/s.
We have: F = m×a
Here, m = 90 Kg
a = 15 m/s²
Substitute their values into the expression:
F = 90 × 15
F = 1350 N
In short, Your Answer would be Option D
Hope this helps!
When developing an experimental design, the action that would improve the quality of the results is to ensure that it answers a question about cause and effect.
<h3>What is experimental design?</h3>
Experimental design is a concept used to organize, conduct, and interpret results of experiments in an efficient way, making sure that as much useful information as possible is obtained by performing a small number of trials.
Thus, when developing an experimental design, the action that would improve the quality of the results is to ensure that it answers a question about cause and effect.
Learn more about experimental design here: brainly.com/question/17274244
#SPJ1