This is known as Wien's Law:
The relationship is:
wavelength = 0.0029/temperature
It is an inversely proportional relationship.
Answer:

Explanation:
The resistance of a wire is given by:

where
is the resistivity of the material
L is the length of the wire
A is the cross-sectional area of the wire
1) The first wire has length L and cross-sectional area A. So, its resistance is:

2) The second wire has length twice the first one: 2L, and same thickness, A. So its resistance is

3) The third wire has length L (as the first one), but twice cross sectional area, 2A. So, its resistance is

By comparing the three expressions, we find

So, this is the ranking of the wire from most current (least resistance) to least current (most resistance).
Answer:
39.40 MeV
Explanation:
<u>Determine the minimum possible Kinetic energy </u>
width of region = 5 fm
From Heisenberg's uncertainty relation below
ΔxΔp ≥ h/2 , where : 2Δx = 5fm , Δpc = hc/2Δx = 39.4 MeV
when we apply this values using the relativistic energy-momentum relation
E^2 = ( mc^2)^2 + ( pc )^2 = 39.4 MeV ( right answer ) because the energy grows quadratically in nonrelativistic approximation,
Also in a nuclear confinement ( E, P >> mc )
while The large value will portray a Non-relativistic limit as calculated below
K = h^2 / 2ma^2 = 1.52 GeV
<h3><u>Answer;</u></h3>
Energy
<h3><u>Explanation;</u></h3>
- A wave is a transmission of disturbance from one point to another. All waves involve transmission of energy from one point called the source to another point.
- <em><u>Waves describes various ways in which energy can be transferred from a point source.</u></em>
- <em><u>In electromagnetic waves</u></em><em>, for instance, </em><em><u>energy transmission occurs as a result of vibrations of electric and magnetic fields</u></em><u>.</u>
- <u><em>In mechanical waves energy transmission is as a result of vibration of particles in the medium used</em></u>. For example in sound waves, energy is transferred through vibration of particles of air or particles of a solid or medium through which sound travels through.