<span>Px = 0
Py = 2mV
second, Px = mVcosφ
Py = –mVsinφ
add the components
Rx = mVcosφ
Ry = 2mV – mVsinφ
Magnitude of R = âš(Rx² + Ry²) = âš((mVcosφ)² + (2mV – mVsinφ)²)
and speed is R/3m = (1/3m)âš((mVcosφ)² + (2mV – mVsinφ)²)
simplifying
Vf = (1/3m)âš((mVcosφ)² + (2mV – mVsinφ)²)
Vf = (1/3)âš((Vcosφ)² + (2V – Vsinφ)²)
Vf = (V/3)âš((cosφ)² + (2 – sinφ)²)
Vf = (V/3)âš((cos²φ) + (4 – 2sinφ + sin²φ))
Vf = (V/3)âš(cos²φ) + (4 – 2sinφ + sin²φ))
using the identity sin²(Ď)+cos²(Ď) = 1
Vf = (V/3)âš1 + 4 – 2sinφ)
Vf = (V/3)âš(5 – 2sinφ)</span>
The outer planets<span> are further away, larger and made up mostly of gas. The </span>inner planets<span> (in order of distance from the sun, closest to furthest) are Mercury, Venus, Earth and Mars. After an asteroid belt comes the </span>outer planets<span>, Jupiter, Saturn, Uranus and Neptune.</span>
Explanation:
According to formula
g = GM/R^2
when mass is halved the value of g becomes half but when radius is halved the value of g increases 4 times.
As a result of both value of g becomes twice.
A = delta v over delta t delta v is calculated with final velocity less initial velocity then delta v is equals to 20 - 0 that is 20m/s and to calculate delta t is like delta v is final time less initial time as initial time always is 0 the delta t is equals to 10s then a = 20/10 then acceleration is 10m/s^2 (remember that is squared)