The answer is B because I took the test and had the question
Answer:
, pfx = pix + Jx.
Explanation:
The momentum principle tells us that impulse transfers momentum to an object.
If an object has 2 kgm/s of momentum, a 1 kgm/s impulse delivered to the object
increases its momentum to 3 kgm/s. That is, pfx = pix + Jx.
Just as we did with energy, we can represent this “momentum accounting” with a
momentum bar chart. For example, the bar chart of FIGURE 11.6 represents the ball
colliding with a wall in Figure 11.4. Momentum bar charts are a tool for visualizing
an interaction
To calculate the ideal mechanical advantage of a lever divide the input arm by the output arm.
Mechanical advantage is the amount by which a machine can multiply an input force, calculated by dividing output Force in newtons by input force in newtons, while the ideal mechanical advantage is the mechanical advantage of a machine that has no friction, calculated by dividing the input distance by the output distance.
Dew - small water drops, happens all the time, even to windows.
Answer:
Object distance means what is the distance between pole and object. Image distance means when image is formed then the distance between pole and image is called image distance. Focal length is the distance between pole and the principal focus of the mirror.
A lens is a clear object, usually made of glass or plastic, which is used to refract, or bend light. Lenses can concentrate light rays (bring them together) or spread them out. Common examples of lenses include camera lenses, telescope lenses, eyeglasses, and magnifying glasses. Lenses are often double lenses, meaning they have two curved sides. A convex lens is rounded outward, while a concave lens curves inward. (A great way to remember this is that a concave lens creates an indent like a cave!)
The image distance can be calculated with the knowledge of object distance and focal length with the help of lens formula. In optics, the relationship between the distance of an image (i), the distance of an object (o), and the focal length (f) of the lens are given by the formula known as Lens formula. Lens formula is applicable for convex as well as concave lenses. These lenses have negligible thickness. It is an equation that relates the focal length, image distance, and object distance for a spherical mirror. It is given as,
1/i + 1/o = 1/f
i= distance of the image from the lens
o= distance of the object from the lens
f= focal length of the lens
Explanation:
Hope it is helpful....