1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bixtya [17]
3 years ago
14

Consider two planets of mass m and 2m,

Physics
2 answers:
Rzqust [24]3 years ago
8 0

Answer:

Part a)

\frac{F_1}{F_2} = 10.125

Part b)

\frac{v_1}{v_2} = \sqrt{\frac{4.5r}{r}} = 2.12

Part c)

\frac{T_1}{T_2} = 9.54

Explanation:

Part a)

As we know that the gravitational force is given as

F = \frac{GMm}{r^2}

so we will have to find the ratio of force on two planets due to star

so here we have

\frac{F_1}{F_2} = \frac{m_1r_2^2}{m_2r_1^2}

\frac{F_1}{F_2} = \frac{m (4.5r)^2}{(2m) r}

\frac{F_1}{F_2} = 10.125

Part b)

Orbital speed is given as

v = \sqrt{\frac{GM}{r}}

so the ratio of two orbital speed is given as

\frac{v_1}{v_2} = \frac{r_2}{r_1}

\frac{v_1}{v_2} = \sqrt{\frac{4.5r}{r}} = 2.12

Part c)

Time period is given as

T = 2\pi\sqrt{\frac{r^3}{GM}}

so the ratio of two time period is given as

\frac{T_1}{T_2} = \sqrt{\frac{r_1^3}{r_2^3}}

\frac{T_1}{T_2} = \sqrt{\frac{4.5r^3}{r^3}}

\frac{T_1}{T_2} = 9.54

tiny-mole [99]3 years ago
4 0

Answer:

Explanation:

Mass of first planet, m1 = m

mass of second planet, m2 = 2m

distance of first planet, r1 = r

distance of second planet, r2 = 4.5 r

Let m be the mass of star.

(a) Force on first planet is given by

F_{1}=\frac{GMm_{1}}{r_{1}^{2}}

F_{1}=\frac{GMm}{r^{2}}     .... (1)

Force on second planet

F_{2}=\frac{GMm_{2}}{r_{2}^{2}}

F_{2}=\frac{2GMm}{20.25r^{2}}     .... (2)

Divide equation (1) by equation (2) ,we get

F1 : F2 = 10.125 : 1

(b) velocity for the first planet

v_{1} = \sqrt{\frac{GM}{r_{1}}}

v_{1} = \sqrt{\frac{GM}{r}}    .... (1)

velocity for the second planet

v_{2} = \sqrt{\frac{GM}{r_{2}}}

v_{2} = \sqrt{\frac{GM}{4.5r}}    .... (2)

Divide equation (1) by equation (2), we get

v1 : v2 = 2.12 : 1

(c) Orbital period for the first planet

T_{1}=\frac{2\pi r_{1}}{v_{1}}

T_{1}=\frac{2\pi r}{v}.... (1)

Orbital period for the second planet

T_{2}=\frac{2\pi r_{2}}{v_{2}}

T_{2}=\frac{2\pi\times 4.5 r\times 2.12}{v}.... (2)

Divide equation (1) by equation (2)

T1 : T2 = 1 : 9.55

You might be interested in
6. An earthquake releases two types of traveling seismic waves, called transverse and longitudinal waves. The average speed of t
zubka84 [21]

Answer:

The distance away the center of the earthquake is 1083.24 km.

Explanation:

Given that,

Speed of transverse wave = 9.1\ km/s

Speed of longitudinal wave = 5.7 km/s

Time = 71 sec

We need to calculate the distance of transverse wave

Using formula of distance

d=v\times t

d=9.1\times t....(I)

The distance of longitudinal wave

d=5.7\times (t+71)....(II)

From the first equation

t=\dfrac{d}{9.1}

Put the value of t in equation (II)

d =5.7\times(\dfrac{d}{9.1}+71)

\dfrac{9.1d-5.7d}{9.1}=71\times5.7

d0.3736=404.7

d =1083.24\ km

Hence, The distance away the center of the earthquake is 1083.24 km.

6 0
2 years ago
A charge -353e is uniformly distributed along a circular arc of radius 5.30 cm, which subtends an angle of 48°. What is the line
vladimir2022 [97]

Answer:

- 1.3 x 10⁻¹⁵ C/m

Explanation:

Q = Total charge on the circular arc = - 353 e = - 353 (1.6 x 10⁻¹⁹) C = - 564.8 x 10⁻¹⁹ C

r = Radius of the arc = 5.30 cm = 0.053 m

θ = Angle subtended by the arc = 48° deg = 48 x 0.0175 rad = 0.84 rad        (Since 1 deg = 0.0175 rad)

L = length of the arc

length of the arc is given as

L = r θ

L = (0.053) (0.84)

L = 0.045 m

λ = Linear charge density

Linear charge density is given as

\lambda =\frac{Q}{L}

Inserting the values

\lambda =\frac{-564.8\times 10^{-19}}{0.045}

λ = - 1.3 x 10⁻¹⁵ C/m

4 0
3 years ago
Which moment corresponds to the maximum potential energy of the system?
MissTica
6489 for the founding product
4 0
2 years ago
The sun produces large amounts of energy. By what process does the sun produce energy?
AlladinOne [14]
The sun produces energy by converting gravitational potential energy into radiation via quantum processes in the nucleus of the atoms.

Since the mass of the sun and it's temperature are not quite enough to generate nuclear FUSION on their own, quantum tunneling is the primary process by which nuclear fusion occurs in our sun, SOL. FISSION also occurs as a result of this fusion.

Additionally, gravitational potential energy is also the reason that supernovae are so bright. Cool!
8 0
3 years ago
You push a box with a force of 80 n. if the net force on the box is 50 n, what is the force on the box due to sliding friction?
Elodia [21]

The force of the sliding friction is 30 N.

3 0
2 years ago
Other questions:
  • Find the acceleration of an object that has a mass of 6 kg, if it is acted upon by a net force of 42 N.
    14·1 answer
  • Subtract 7.987 m - 0.54 m and the final answer must be in decimal form
    5·1 answer
  • A 5 kg block moves in a straight line on a horizontal frictionless surface under the influence of a force that varies with posit
    14·1 answer
  • Which type of atom has the same number of protons and electrons
    14·1 answer
  • What statement best defines work?
    14·2 answers
  • 9. A 30 cm ruler is found to have a center of mass of 15.6 cm. The percent error of the center of mass is _____, if the ruler is
    9·1 answer
  • 2. Why is an experiment called a controlled study?
    5·2 answers
  • Light with a wavelength of 612 nm incident on a double slit produces a second-order maximum at an angle of 25 degree. What is th
    15·1 answer
  • When you increase the volume with constant temperature, what happens
    5·2 answers
  • What Grade will you give my One Pager so Far?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!