Average Velocity = Total Displacement / Total time
1st part of journey, 350 km at velocity 125 km/h
Time = 350 / 125 = 2.8 hours.
2nd part of journey, 220 km at velocity 115 km/h
Time = 220 / 115 = 1.9 hours
Average Velocity = Total Displacement / Total time
= (350 + 220) / (2.8 + 1.9)
= 570 / 4.7 ≈ 121.3 km/hr
Average Velocity ≈ 121 km/hr due south.
Option C.
Answer:
Part a)

Part b)
if both sides are rough then it will reach the same height on the other side because the energy is being conserved.
Part c)
Since marble will go to same height when it is rough while when it is smooth then it will go to the height

so on smooth it will go to lower height
Explanation:
As we know by energy conservation the total energy at the bottom of the bowl is given as

here we know that on the left side the ball is rolling due to which it is having rotational and transnational both kinetic energy
now on the right side of the bowl there is no friction
so its rotational kinetic energy will not change and remains the same
so it will have

now we know that


so we have




so the height on the smooth side is given as

Part b)
if both sides are rough then it will reach the same height on the other side because the energy is being conserved.
Part c)
Since marble will go to same height when it is rough while when it is smooth then it will go to the height

so on smooth it will go to lower height
Answer:
Q = 5 L/s
Explanation:
To find the flow you use the following formula (para calcular el caudal usted utiliza la siguiente formula):

V: Volume (volumen) = 200L
t: time (tiempo) = 40 s
you replace the values of the parameters to calculate Q (usted reemplaza los valores de los parámteros V y t para calcular el caudal):

Hence, the flow is 5 L/s (por lo tanto, el caudal es de 5L/s)
<h2>Answer: electrostatic and gravitational force
</h2><h2 />
Mechanical energy remains constant (conserved) if only <u>conservative forces</u> act on the particles.
In this sense, the following forces are conservative:
-Gravitational
-Elastic
-Electrostatics
While the Friction Force and the Magnetic Force are not conservative.
According to this, mechanical energy is conserved in the presence of electrostatic and gravitational forces.
Momentum is conserved in a collision. Momentum is mass*velocity, so you can find your answer by calculating initial and final momentums and setting them equal to each other.
15kg * 3.50 m/s + 9kg * 2.35 m/s = 73.65 kg m/s
73.65 = 9 * 2.8 + 15x
solve for x
x= 3.23
The final velocity is 3.23 m/s