The density of an object can be calculated using the formula Density = Mass/Volume. In this case however we are searching for the volume and must rearrange the formula so that we are solving for the volume. If you multiply both sides by volume and then divide both sides by mass you end up with the equation Volume = Mass/Density.
Volume = 1500g/1.5g/cm^3
Volume = 1000 cm^3
The current in the ideal diode with forward biased voltage drop of 65V is 132.6 mA.
To find the answer, we have to know more about the ideal diode.
<h3>
What is an ideal diode?</h3>
- A type of electronic component known as an ideal diode has two terminals, only permits the flow of current in one direction, and has less zero resistance in one direction and infinite resistance in another.
- A semiconductor diode is the kind of diode that is used the most commonly.
- It is a PN junction-containing crystalline semiconductor component that is wired to two electrical terminals.
<h3>How to find the current in ideal diode?</h3>
- Here we have given with the values,

- We have the expression for current in mA of the ideal diode with forward biased voltage drop as,

Thus, we can conclude that, the current in mA of the ideal diode with forward biased voltage drop of 65 V is 132.6.
Learn more about the ideal diode here:
brainly.com/question/14988926
#SPJ4
Explanation:
The force of a spring is described by Hooke's law:
F = kx
where k is the spring stiffness in N/m, and x is the displacement in m.
A spring force vs displacement graph is a line passing through the origin with a slope of k.
Answer:0.906 N/m
Explanation:
Given
time period 
mass 
System can be considered as spring mass system
Time Period of spring mass system is given by

squaring


