Potential and kinetic energy
Answer:
Answered
Explanation:
As Merrill watches his finger with both eyes open as he brings his finger closer to his nose, he feels his eye muscles working. This shows that her eyes Muscles have both accommodation and convergence.
Accommodation and convergence allows us to view objects both near and at far without double vision.
Answer:
relates the electric field at points on a closed surface to the net charge enclosed by that surface.
Explanation:
Gauss Law states that overall electric flux of a closed surface is equivalent right to charge enclosed which is divided by the permittivity. In other words Gauss Law stress that
net electric flux that pass through an hypothetical closed surface is equivalent to overall electric charge present within that closed surface.
The Gauss law can be expressed mathematically as
ϕ = (Q/ϵ0)
Q = total charge within the surface,
ε0 = the electric constant
Explanation:
It is given that,
Distance, r = 3.5 m
Electric field due to an infinite wall of charges, E = 125 N/C
We need to find the electric field 1.5 meters from the wall, r' = 1.5 m. Let it is equal to E'. For an infinite wall of charge the electric field is given by :

It is clear that the electric field is inversely proportional to the distance. So,


E' = 291.67 N/C
So, the magnitude of the electric field 1.5 meters from the wall is 291.67 N/C. Hence, this is the required solution.