1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dolphi86 [110]
2 years ago
5

A bar magnet moves through a loop of wire with constant velocity, and the north pole enters the loop first the induced current w

ill be greatest when the magnet is located so that the loop is
Physics
2 answers:
Ksivusya [100]2 years ago
8 0
<span>A bar magnet moves through a loop of wire with constant velocity, and the north pole enters the loop first the induced current will be greatest when the magnet is located so that </span>the loop is near either the north or the south pole.
noname [10]2 years ago
3 0

Answer:

Loop must be near the end of the pole of bar magnet

Explanation:

As we know by Faraday's law of electromagnetic induction the induced EMF or induced current in the loop is given by

EMF = \frac{d\phi}{dt}

here we know that

\phi = B.A

now we know that as the magnet comes closer to the loop the magnetic field due to any of the pole of magnet will increase.

So here the maximum flux will pass through the magnet when magnet is closer to the loop.

So here when A bar magnet moves through a loop of wire with constant velocity, and the north pole enters the loop first the induced current will be greatest when the magnet is located so that the loop is when Loop must be near the end of the pole of bar magnet

You might be interested in
A thunderclap sends a sound wave through the air and the ocean below. The
marysya [2.9K]

Answer:

C. 14.93 m

Explanation:

The given frequency of the wave, f = 100 Hz

The given equation for the wave speed, <em>v</em>, is presented as follows;

v = f × λ

The speed of sound in water, v = 1,493 m/s

Therefore, we get;

The wavelength, λ = v/f

∴ λ = 1,493 m/s/(100 Hz) = 14.93 m

The wavelength, λ = 14.93 m.

8 0
3 years ago
Explain the benefits of understanding sound waves properties in real life.
Tems11 [23]

Answer:

The vibrations from sound waves cause our ears to send signals to our brains to create sound. The speed of sound waves will determine the sound's pitch, or how high or low something sounds. Sound waves are important because they allow us to hear important messages and emergency signals to protect ourselves.

Explanation:

I hope this helps :)

4 0
2 years ago
A 615.00 kg race car is uniformly traveling around a circular race track. It takes the race car 20.00 seconds to do one lap arou
koban [17]

Answer:

The value is  f  =  0.05 \ Hz

Explanation:

From the question we are told that

     The mass of the car is  m  =  615 \  kg

      The period of the circular motion is  T  =  20 \  s

      The radius  is r =  80 \  m/s

Generally the frequency of the circular motion is  

       f  =   \frac{1}{T }

=>    f  =   \frac{1}{ 20  }

=>    f  =  0.05 \ Hz

3 0
3 years ago
Use the information below to answer questions
Ulleksa [173]

Answer:

The charges are q₁  = 2 × 10⁻⁸ C and  q₂ = 3 × 10⁻⁸ C

Explanation:

Here is the complete question

Two identical tiny balls have charge q1 and q2. The repulsive force one exerts on the other when they are 20cm apart is 1.35 X 10-4 N. after the balls are touched together and then represented once again to 20cm, now the repulsive force is found to be 1.40 X 10-4 N. find the charges q1 and q2.

Solution

The force F = 1.35 × 10⁻⁴ N when the charges are separated a distance of r = 20 cm = 0.2 m is given by

F = kq₁q₂/r₁²

q₁q₂ = Fr₁²/k

q₁q₂ = 1.35 × 10⁻⁴ N × (0.2 m)²/9 × 10⁹ Nm²/C² = 0.054/9 × 10⁻¹³ C² = 0.006 × 10⁻¹³ C² = 6 × 10⁻¹⁶ C²

q₁q₂ = 6 × 10⁻¹⁶ C² (1)

When the charges are brought together, the charge is now q = (q₁ + q₂)/2

The new repulsive force F = 1.406 × 10⁻⁴ N  at a distance of r₂ = 20 cm = 0.2 m is then

F₂ = kq²/r₂²

q² = F₂r₂²/k = 1.406 × 10⁻⁴ N × (0.2 m)²/9 × 10⁹ Nm²/C² = 0.00625 × 10⁻¹³ C² = 6.25 × 10⁻¹⁶ C²

q² = 6.25 × 10⁻¹⁶ C²

q = √(6.25 × 10⁻¹⁶) C

q = 2.5 × 10⁻⁸ C

(q₁ + q₂)/2 =  2.5 × 10⁻⁸ C

(q₁ + q₂) = 2 × 2.5 × 10⁻⁸ C

q₁ + q₂ = 5 × 10⁻⁸ C (2)

q₁  = 5 × 10⁻⁸ C - q₂  (3)

Substituting equation (3) into (1), we have

(5 × 10⁻⁸ C - q₂)q₂ = 6 × 10⁻¹⁶ C²

Expanding the bracket, we have

(5 × 10⁻⁸ C)q₂ - q₂² = 6 × 10⁻¹⁶ C²

So, q₂² - (5 × 10⁻⁸ C)q₂ + 6 × 10⁻¹⁶ C² = 0

Using the quadratic formula to find q₂

q_{2} = \frac{-(-5 X 10^{-8} )+/- \sqrt{(-5 X 10^{-8} )^{2} - 4X1X6 X 10^{-16} } }{2X1}\\  = \frac{5 X 10^{-8} )+/- \sqrt{25 X 10^{-16}  - 24 X 10^{-16} } }{2}\\= \frac{5 X 10^{-8} )+/- \sqrt{1 X 10^{-16} } }{2}\\= \frac{5 X 10^{-8} )+/- 1 X 10^{-8} }{2}\\= \frac{5 X 10^{-8} + 1 X 10^{-8} }{2} or \frac{5 X 10^{-8}  - 1 X 10^{-8} }{2}\\= \frac{6 X 10^{-8} }{2} or \frac{4 X 10^{-8}}{2}\\= 3 X 10^{-8} C or 2 X 10^{-8} C

q₁  = 5 × 10⁻⁸ C - q₂

q₁  = 5 × 10⁻⁸ C - 3 × 10⁻⁸ C or 5 × 10⁻⁸ C - 2 × 10⁻⁸ C

q₁  = 2 × 10⁻⁸ C or 3 × 10⁻⁸ C

So the charges are q₁  = 2 × 10⁻⁸ C and  q₂ = 3 × 10⁻⁸ C

5 0
3 years ago
A brick is dropped from a high scaffold. a. What is its velocity after 4.0s ?
Ilia_Sergeevich [38]

Answer:

A: 1.962

B: 3.924

Explanation:

g = G *M /R^2

g = 9.807*M/R^2 the gravitational constant of ground level on earth is about 9.807

g = 9.807*5lbs/R^2 the average brick is about 5 pounds.

g = 9.807*5*10^2.   I'm assuming the height is around ten feet to help you out.

with these numbers plugged in you get an acceleration of 0.4905 a final velocity after 4 seconds 1.962. It's height fallen after 4 seconds is 3.924.

( M = whatever the brick weighs it's not specified in the question)

(R = the distance from the ground or how high the scaffold is)

(hopefully you can just plug your numbers in there hope this helps)

6 0
3 years ago
Other questions:
  • A student is trying to determine if a solution is acidic or basic. She does not have any litmus paper. Which would she most like
    12·1 answer
  • Which words help you to determine the meaning of the word decelerate in paragraph 3
    6·1 answer
  • How fast must a 70 kg student be running to have a kinetic energy of 568 J?!
    6·1 answer
  • An office window has dimensions 3.7 m by 2.1 m. As a result of the passage of a storm, the outside air pressure drops to 0.972 a
    11·1 answer
  • You replace a 100 W incandescent lightbulb with a 22 W CFL bulb. If you leave your lights on 24 hours a day, how much energy are
    8·1 answer
  • What property of matter is momentum related to
    10·2 answers
  • A steady-state temperature difference of 85 K is impressed across a fiberglass layer of 13 cm thickness. The thermal conductivit
    7·1 answer
  • A student tries to measure the period of a pendulum that is already swinging
    15·1 answer
  • If a car is rounding a flat curve on a highway, what is the centripetal force on the car?
    12·1 answer
  • Plz help ASAP please !!
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!