Sun is the biggest mass in the ss
Answer:
sweeps out equal areas in equal times.
Explanation:
As we know that there is no torque due to Sun on the planets revolving about the sun
so we will have

now we have

now we also know that

so rate of change in area is given as

so we will have


since angular momentum and mass is constant here so
all planets sweeps out equal areas in equal times.
Answer:
26b) 66.7%
27) 500 N
Explanation:
26.a) In a two pulley system, the load is attached to one of the pulleys. The other pulley is attached to a fixed surface, as well as one end of the rope. The other end of the rope goes around moving pulley, then around the fixed pulley.
26.b) Mechanical advantage is the ratio between the forces:
MA = load force / effort force
Efficiency is the ratio between the work:
e = work done on load / work done by effort
Work is force times distance.
e = (F load × d load) / (F effort × d effort)
Rearranging:
e = (F load / F effort) × (d load / d effort)
e = MA × (d load / d effort)
In a two pulley system, the load moves half the distance of the effort. So the efficiency is:
e = (4/3) × (1/2)
e = 2/3
e = 66.7%
27) In a three pulley system, the load moves a third of the distance of the effort.
e = (F load / F effort) × (d load / d effort)
0.40 = (600 N / F) × (1/3)
F = 500 N
<h2>
Heat released in this process is 3516.7 J</h2>
Explanation:
A calorimeter has a heat capacity of 1265 J/°C
Heat capacity of calorimeter = 1265 J/°C
A reaction causes the temperature of the calorimeter to change from 22.34°C to 25.12°C
Change in temperature = 25.12 - 22.34 = 2.78°C
Heat released = Heat capacity of calorimeter x Change in temperature
Heat released = 1265 x 2.78 = 3516.7 J
Heat released in this process is 3516.7 J
The correct answer is B.
Let us think of the classical theory first. In the classical theory, light is a wave that gives energy. This energy gradually helps the electron jump to a higher energy level.
In quantum theory, this is wrong; an electron cannot absorb a small amout of energy because there is not close enough state to jump to with that energy; only very specific amounts of energy lead to a change in orbital levels/ absorbance of energy. Also, each pair of energy levels has a specific energy difference that is needed from an electron so that it can move.
Hence, B is correct; all other sentences describe classical models of light-electron interactions