Enormous energy get released from the sun due to fusion reaction.
<h3>
How does enormous energy get released from the sun?</h3>
Sun can generate enormous energy due to nuclear fusion. In this process, high temperature and pressure in the core of the sun force the nuclei to separate from their electrons which results in the formation of one Helium atom releasing a large amount of energy.
So we can conclude that enormous energy get released from the sun due to fusion reaction.
Learn more about energy here: brainly.com/question/13881533
#SPJ1
B, C, and D.
Solar energy is green energy, it wouldn't contribute to global warming. However some places of the world don't receive as much sunlight (the poles) and at night you don't receive as much sunlight either. Solar energy is also very expensive to farm.
Answer:
a. 5 batteries b. 1050 mAh
Explanation:
Here is the complete question
A student project is required to be portable and hand held. It requires 6 V DC power at a current of 150 mA. The batteries for the power supply must last for a minimum of 7 hours of continuous operation. NiMH rechargeable batteries in AA size are to be used. A) How many batteries are needed? B) What mAh capacity should the batteries have?
Solution
A) How many batteries are needed?
Since the nominal voltage for a single NiMH battery is 1.2 V per battery and we require 6V DC power, we combine the batteries in series to obtain a total voltage of 6 V. The number of batteries required, n = total voltage/voltage per cell = 6V/1.2V per battery = 5 batteries
So, the number of batteries needed is 5.
B) What mAh capacity should the batteries have?
Since the batteries are in series, they would each deliver a current of 150 mA. Since we require a current of 150 mA for 7 hours, the number of milliampere-hours capacity mAh of batteries required is Q = It where I = current = 150 mA and t = time = 7 hours.
So, Q = It = 150 mA × 7 h = 1050 mAh.
So, the batteries should have a mAh of 1050 mAh
N2+3H2->2NH3
When 3 moles of H2 react, they produce 2 moles of NH3
3 moles of H2 have a mass of 2.02 g
2 moles of NH2 have a mass of 17.0 g
So when 2.02 g H2 react, they produce 17.0 g NH3
If 26.3g H2 react with a yield of 100%, we expect…
2.02g H2_____17.0gNH3
26.3g H2_____x=221gNH3
So now let’s calculate the percentage:
221gNH3_________100%
79.0gNH3_________x=79.0*100/221=35.7%
Answer: D Moreecethadev get's 5 stars, Thanks.
Explanation:
Answer is D.