<span>Nuclear energy is cleaner while generating electricity. Nuclear fission provides energy without releasing greenhouse gases such as carbon dioxide. However, nuclear power plants generate significant amounts of radioactive waste. That is why we should not choose nuclear energy over fossil fuel power plants.</span>
The energy travels in a disturbance, in an ocean that disturbance is a wave, so the wave makes energy and moves it through the water
Competition in the Los Angeles Flower District results in better quality flowers.
<h3>Why quality is the standard in flower competition?</h3>
Competition results in better quality flowers because in the competition, best quality of flowers will be selected as a winner so the competitors produces best quality of flowers in order to claim the prize so we can conclude that Competition in the Los Angeles Flower District results in better quality flowers
Learn more about competition here: brainly.com/question/25605883
A) 1.55
The speed of light in a medium is given by:

where
is the speed of light in a vacuum
n is the refractive index of the material
In this problem, the speed of light in quartz is

So we can re-arrange the previous formula to find n, the index of refraction of quartz:

B) 550.3 nm
The relationship between the wavelength of the light in air and in quartz is

where
is the wavelenght in quartz
is the wavelength in air
n is the refractive index
For the light in this problem, we have

Therefore, we can re-arrange the equation to find
, the wavelength in air:
