Answer:
A) 29.4 m 17.0 m; B) 2 m
Explanation:
If a vector is 34.0 m in length and is directed 60.0° east of north (which means 30.0° over the horizontal), then its coordinates will be:
Horizontal: (34.0 m)cos(30.0°)=29.4 m
Vertical: (34.0 m)sin(30.0°)=17 m
If one person walks 8.0 meters in a straight line and then walks 5.0 meters in another straight line, then the minimum displacement would be to go back over his tracks, displacing himself 8m-5m=3m, while the maximum displacement would be going straight ahead, displacing himself 8m+5m=13m. Any answer outside this interval is impossible (2m).
Answer:

Explanation:
<em>Longitudinal</em><em> </em><em>waves</em><em> </em>are parallel to the direction of the motion of the disturbance, while <em>transverse</em><em> </em><em>waves</em><em> </em>are perpendicular to the direction of the motion of the disturbance.
I am joyous to assist you anytime.
Answer: a) 6.67cm/s b) 1/2
Explanation:
According to law of conservation of momentum, the momentum of the bodies before collision is equal to the momentum of the bodies after collision. Since the second body was initially at rest this means the initial velocity of the body is "zero".
Let m1 and m2 be the masses of the bodies
u1 and u2 be their velocities respectively
m1 = 5.0g m2 = 10.0g u1 = 20.0cm/s u2 = 0cm/s
Since momentum = mass × velocity
The conservation of momentum of the body will be
m1u1 + m2u2 = (m1+m2)v
Note that the body will move with a common velocity (v) after collision which will serve as the velocity of each object after collision.
5(20) + 10(0) = (5+10)v
100 + 0 = 15v
v = 100/15
v = 6.67cm/s
Therefore the velocity of each object after the collision is 6.67cm/s
b) kinectic energy of the 10.0g object will be 1/2MV²
= 1/2×10×6.67²
= 222.44Joules
kinectic energy of the 5.0g object will be 1/2MV²
= 1/2×5×6.67²
= 222.44Joules
= 111.22Joules
Fraction of the initial kinetic transferred to the 10g object will be
111.22/222.44
= 1/2
If the tension in the rope is 160 n, - 43200 J work doen by the rope on the skier during a forward displacement of 270 m.
Given,
Tension force in the rope is (T) = 160 N
Displacement of the skier (S) = 270 m
The displacement takes place in forward direction while the direction of the tension in the rope is opposite to it.
Therefore, work done by the rope on the skier is,

⇒
Hence work done by the rope is - 43200 J.
Learn more about force problems on
brainly.com/question/26850893
#SPJ4