1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PolarNik [594]
3 years ago
10

What is the equation of the line perpendicular to the line y=4/9x-2 that passes through the line 4,3

Mathematics
2 answers:
alukav5142 [94]3 years ago
6 0

Given

The line equation is        

y= \frac{4}{9}x-2

passes through the line (4,3 )

Find out the equation of the perpendicular line.

To proof

given equation is

 y= \frac{4}{9}x-2

the equation of line is in the form y = mx +c

where m = slope

           c is the intercept on the y axis.

compare this equation to the above equation

we get

m =\frac{4}{9}

In perpendicular line case

The slope of a perpendicular line is the "negative reciprocal" of the slope of the original line.

thus slope of the perpendicular line

= \frac{-9}{4}

Than equation perpendicular line becomes

y= \frac{-9}{4}x + c

as the line passes through the point( 4,3)

put these value in the above equation

we get

3= \frac{-9}{4}\times 4 + c

solving the above equation

3 +9 =c

12 =c

put this value in the above equation

we get

y= \frac{-9}{4}\times x + 12

this is equation of the perpendicular line.

Hence proved



skad [1K]3 years ago
6 0
Y=-9/4x-3 (the slope to a perpendicular pair is the reciprocal of the opposite)
You might be interested in
A +-21 = -38<br><br>help me please​
ivann1987 [24]

Answer:

A= -17

Step-by-step explanation:

A +-21 = -38

    +21     +21

-38+21= -17

A= -17

5 0
2 years ago
Read 2 more answers
Please help me I don’t understand this and I really need to get my grade up.
Ksivusya [100]

Answer:F=7

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Explain how to multiply the following whole numbers 21 x 14
Lesechka [4]

Answer:

\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ \times \:&1&\textbf{4}\end{matrix}

________

\frac{\begin{matrix}\space\space&\textbf{0}&8&4\\ +&\textbf{2}&1&0\end{matrix}}{\begin{matrix}\space\space&\textbf{2}&9&4\end{matrix}}

Step-by-step explanation:

Given

21\:\times \:14

Line up the numbers

\begin{matrix}\space\space&2&1\\ \times \:&1&4\end{matrix}

Multiply the top number by the bottom number one digit at a time starting with the ones digit left(from right to left right)

Multiply the top number by the bolded digit of the bottom number

\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ \times \:&1&\textbf{4}\end{matrix}

Multiply the bold numbers:    1×4=4

\frac{\begin{matrix}\space\space&2&\textbf{1}\\ \times \:&1&\textbf{4}\end{matrix}}{\begin{matrix}\space\space&\space\space&4\end{matrix}}

Multiply the bold numbers:    2×4=8

\frac{\begin{matrix}\space\space&\textbf{2}&1\\ \times \:&1&\textbf{4}\end{matrix}}{\begin{matrix}\space\space&8&4\end{matrix}}

Multiply the top number by the bolded digit of the bottom number

\frac{\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ \times \:&\textbf{1}&4\end{matrix}}{\begin{matrix}\space\space&8&4\end{matrix}}

Multiply the bold numbers:    1×1=1

\frac{\begin{matrix}\space\space&\space\space&2&\textbf{1}\\ \space\space&\times \:&\textbf{1}&4\end{matrix}}{\begin{matrix}\space\space&\space\space&8&4\\ \space\space&\space\space&1&\space\space\end{matrix}}

Multiply the bold numbers:    2×1=2

\frac{\begin{matrix}\space\space&\space\space&\textbf{2}&1\\ \space\space&\times \:&\textbf{1}&4\end{matrix}}{\begin{matrix}\space\space&\space\space&8&4\\ \space\space&2&1&\space\space\end{matrix}}

Add the rows to get the answer. For simplicity, fill in trailing zeros.

\frac{\begin{matrix}\space\space&\space\space&2&1\\ \space\space&\times \:&1&4\end{matrix}}{\begin{matrix}\space\space&0&8&4\\ \space\space&2&1&0\end{matrix}}

adding portion

\begin{matrix}\space\space&0&8&4\\ +&2&1&0\end{matrix}

Add the digits of the right-most column: 4+0=4

\frac{\begin{matrix}\space\space&0&8&\textbf{4}\\ +&2&1&\textbf{0}\end{matrix}}{\begin{matrix}\space\space&\space\space&\space\space&\textbf{4}\end{matrix}}

Add the digits of the right-most column: 8+1=9

\frac{\begin{matrix}\space\space&0&\textbf{8}&4\\ +&2&\textbf{1}&0\end{matrix}}{\begin{matrix}\space\space&\space\space&\textbf{9}&4\end{matrix}}

Add the digits of the right-most column: 0+2=2

\frac{\begin{matrix}\space\space&\textbf{0}&8&4\\ +&\textbf{2}&1&0\end{matrix}}{\begin{matrix}\space\space&\textbf{2}&9&4\end{matrix}}

Therefore,

\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ \times \:&1&\textbf{4}\end{matrix}

________

\frac{\begin{matrix}\space\space&\textbf{0}&8&4\\ +&\textbf{2}&1&0\end{matrix}}{\begin{matrix}\space\space&\textbf{2}&9&4\end{matrix}}

6 0
3 years ago
The heights of men in a certain population follow a normal distribution with mean 69.7 inches and standard deviation 2.8 inches.
Mama L [17]

Answer:

a) P(Y > 76) = 0.0122

b) i) P(both of them will be more than 76 inches tall) = 0.00015

   ii) P(Y > 76) = 0.0007

Step-by-step explanation:

Given - The heights of men in a certain population follow a normal distribution with mean 69.7 inches and standard deviation 2.8 inches.

To find - (a) If a man is chosen at random from the population, find

                    the probability that he will be more than 76 inches tall.

              (b) If two men are chosen at random from the population, find

                    the probability that

                    (i) both of them will be more than 76 inches tall;

                    (ii) their mean height will be more than 76 inches.

Proof -

a)

P(Y > 76) = P(Y - mean > 76 - mean)

                 = P( \frac{( Y- mean)}{S.D}) > \frac{( 76- mean)}{S.D})

                 = P(Z >  \frac{( 76- mean)}{S.D})

                 = P(Z > \frac{76 - 69.7}{2.8})

                 = P(Z > 2.25)

                 = 1 - P(Z  ≤ 2.25)

                 = 0.0122

⇒P(Y > 76) = 0.0122

b)

(i)

P(both of them will be more than 76 inches tall) = (0.0122)²

                                                                           = 0.00015

⇒P(both of them will be more than 76 inches tall) = 0.00015

(ii)

Given that,

Mean = 69.7,

\frac{S.D}{\sqrt{N} } = 1.979899,

Now,

P(Y > 76) = P(Y - mean > 76 - mean)

                 = P( \frac{( Y- mean)}{\frac{S.D}{\sqrt{N} } })) > \frac{( 76- mean)}{\frac{S.D}{\sqrt{N} } })

                 = P(Z > \frac{( 76- mean)}{\frac{S.D}{\sqrt{N} } })

                 = P(Z > \frac{( 76- 69.7)}{1.979899 }))

                 = P(Z > 3.182)

                 = 1 - P(Z ≤ 3.182)

                 = 0.0007

⇒P(Y > 76) = 0.0007

6 0
3 years ago
I'm having trouble figuring out how to find the right symbol for this problem √9=6 ? 3​
bearhunter [10]

Answer:

It's a - (minus) sign.

Step-by-step explanation:

This is because √9 is 3, and therefore 6-3=3.

Hope I helped :)

5 0
3 years ago
Other questions:
  • Name the ordered pair that corresponds to an angle of a pi radians
    10·1 answer
  • What is the value of x to the nearest tenth ? <br><br> A.) 4.7<br> B.) 21.4<br> C.) 0.5
    11·2 answers
  • Give two ways to write each algebraic expression in words.
    12·1 answer
  • Rewrite the fraction in simplest form.<br> 14/30
    5·2 answers
  • Help!!!!!!!!!!!!!!!!!
    10·1 answer
  • What is ans of this question a b c d ​
    11·1 answer
  • I NEED HELP ASAPPP!!!<br><br><br> PLEASE HELP MEEE
    11·2 answers
  • There are 15 fruits in a bowl and 3 of them are apples. What percent of the fruits in the bowl are apples?
    7·1 answer
  • Plsss answer this for meeeee
    15·1 answer
  • Jose bout 9 movie tickets for a total of $54 adult tickets cost $8 is an adult child ticket cost $3.50 each. How many adult tick
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!