Metalloid is the closest because noble gases are obviously out, nonmetals are terrible conductors, and metals are not malleable
1) Find the number of moles that the final solution must contain
M = n / liters of solution => n = M*liters of solution
n = 1.5 mol/liter * 25.0 liter = 37.5 moles
2) Find how many liters of the stock solution contain 37.5 moles of HCL
M = n / liters of sulution => liters of solution = n / M = 37.5 mol / 18.5 mol/liter
liter of solution = 2.03 liter
Answer: 2.03 liter
Letter C on the model titration curve corresponds to the point where pH equals the numerical value of pKa for HPr
<h3>What is a titration curve?</h3>
A titration curve is a graph of the pH of a solution against increasing volumes of an acid or a base that is added to the solution.
The pH of a solution is the negative logarithm to base ten of the hydrogen ion concentration and is a measure of the acidity or alkalinity of the solution.
The pKa is the acid dissociation constant of an acid solution.
In a titration of a strong acid and strong base, the pH at equivalence point is equal to the pKa of the acid.
The equivalence point is the point when equal moles of acids and base has reacted.
In the given titration curve, pH = pKa at point C.
In conclusion, for a titration curve of strong acid and base, at equivalence point, pH is equal to pKa of acid.
Learn more about equivalence point at: brainly.com/question/23502649
#SPJ1
Answer:
The answer to your question is 126.1°C
Explanation:
Boiling point Difference of boiling points
C₃H₈ - 42.1°C
C₄H₁₀ - 0.5°C 41.6 °C
C₅H₁₂ 36.1°C 36.6°C 41.6 - 36.6 = 5°C
C₆H₁₄ 68.7°C 32.6°C 36.6 - 32.6 =4°C
C₇H₁₆ 98.4°C 29.7°C 32.6 - 29.7 = 2.9°C
We can observe on the table that the difference of boiling points diminishes 1°C when the hydrocarbon has one more carbon, then the difference of temperature between the hydrocarbon of 8 carbons and the hydrocarbon of 7 carbons must be 2°C.
So, this difference is 29.7°C - 2°C = 27.7°C.
And the boiling point of octane is approximately 98.4 + 27.7°C = 126.1°C
Answer:
B. pOH = 14 - pH and D. pH = 14 - pOH.
Explanation:
Hello,
In this case, we must remember that pH and pOH are referred to a measure of acidity and basicity respectively, since pH accounts for the concentration of H⁺ and pOH for the concentration of OH⁻ in a solution. In such a way, since the maximum scale is 14, we say that the addition between the pH and pOH must be 14:

Therefore, the correct answers are B. pOH = 14 - pH and D. pH = 14 - pOH since the both of them are derived from the previous definition.
Best regards.