Radioactive dating uses the concept of half life to determine the age of something.
The general idea is that elements exist naturally as a combination of isotopes. Some isotopes are stable while others decay radioactively. The half-life of a radioactive isotope is the time required to reduce the initial quantity of the isotope by 50% through the process of radioactive decay.
Carbon 14 dating works this way. A tree growing in the past would have an equilibrium mixture of C-12 and C-14 atoms in proportions consistent with living matter today. We know this value.
When that tree dies, it no longer accumulates new carbon atoms from carbon dioxide in the atmosphere (through photosynthesis). At this point, the proportion of C-14 in the organic matter that was the tree decreases due to the decay of C-14 to an isotope of nitrogen.
When we dig up the remnants of the tree today, we can measure the proportion of C-14 to C-12 and see how much it has been reduced. From this we can calculate backwards using the half life of C-14 (5730 years) to estimate how old the remains of the tree are.
Base on your question where a concentration cell consist of two SN/SN2+half cells. The solution in one half cell A is 0.13M SN(NO3)2 and is 0.87 M Sn(NO3)2 in the other half cell to get the cell potential at 25 degree the answer is 0.059/2 log0.13/0.87
<h3>
Answer:</h3>
3.0 × 10²³ molecules AgNO₃
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Writing Compounds
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
85 g AgNO₃ (silver nitrate)
<u>Step 2: Identify Conversions</u>
Avogadro's Number
[PT] Molar Mass of Ag - 107.87 g/mol
[PT] Molar Mass of N - 14.01 g/mol
[PT] Molar Mass of O - 16.00 g/mol
Molar Mass of AgNO₃ - 107.87 + 14.01 + 3(16.00) = 169.88 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 2 sig figs.</em>
3.01313 × 10²³ molecules AgNO₃ ≈ 3.0 × 10²³ molecules AgNO₃
Answer: 0.002 m³
Explanation:
We can use our unit conversions to find the volume in m³.

Answer:
one of the atoms sharing electrons is more electronegative than the other atom
Explanation: