Option d: copper.
Because copper is an element, not a mixture.
<span>If you look at the chlorine box, with the symbol Cl, you see the atomic mass is equal to 35.453 atomic mass units. This is the weighted average mass of chlorine, including its isotopes, as found in nature. This also means that one mole of chlorine atoms has a mass of 35.453 grams.</span>
Answer:
The liquid boils.
Explanation:
Vapor pressure is simply defined as the pressure exerted on a substance (solid/liquid) by the vapor of the substance collected just at the top of the surface of the substance. In concise words, it is the pressure of Vapor that is in contact with its solid or liquid state.
For a liquid, it is the pressure of the Vapor gathering at the top of the surface of the liquid.
When this Vapor pressure matches the external pressure, the temperature stays constant and the molecules of the liquid all through the liquid can gain enough energy, rise to the surface of the liquid and break free in gaseous form; thereby, boiling.
The definition of boiling point basically explains that it is the point at which temperature stays constant, and the vapour pressure of the liquid matches the atmospheric/external pressure around the liquid and its liquid molecules change into vapor.
This is why liquids boil faster at higher altitudes; the atmospheric pressure at higher altitudes is reduced, hence, the temperature at which liquid boils at this high altitude is normally lower than its known boiling point temperature.
It is also why food cooks to a temperature higher than the boiling point of water in a pressure cooker/pot. The added pressure ensures that the cooking water boils at temperatures higher than its boiling point; thereby exposing the cooking ingredients to a higher temperature, leading to faster cooking.
Hence, it is obvious why boiling is the answer to this question.
Explanation:
12 hours ago
El ácido sulfúrico H2SO4 es uno de los compuestos que se utiliza para la producción de fertilizantes como el nitrosulfato amónico. Si disponemos de 8 mL de H2SO4 al 37 %P/P (d=1,26 g /mL), los cuales se disolvieron hasta alcanzar un volumen de solución de 400 mL, con una densidad de 1,08 g/mL. (La densidad del soluto es corresponde a 1,83 g/cm³)