Answer:
The given molecules are SO2 and BrF5.
Explanation:
Consider the molecule SO2:
The central atom is S.
The number of domains on S in this molecule is three.
Domain geometry is trigonal planar.
But there is a lone pair on the central atom.
So, according to VSEPR theory,
the molecular geometry becomes bent or V-shape.
Hybridization on the central atom is
.
Consider the molecule BrF5:
The central atom is Br.
The number of domains on the central atom is six.
Domain geometry is octahedral.
But the central atom has a lone pair of electrons.
So, the molecular geometry becomes square pyramidal.
The hybridization of the central atom is
.
The shapes of SO2 and BrF5 are shown below:
The range in size of most atomic radii is approximately <span>5 × 10−21 m to 2 × 10−20 m. The rest of the choices do not answer the question above.</span>
Answer:The surface heated air expands as it warms, becomes less dense than surrounding cooler air and rises as buoyant and turbulent bubbles. This is convection and is the main process by which the troposphere mixes and heats. Although convection stirs and mixes the troposphere, the higher it is the colder it becomes.
Explanation: Read this and you'll get your answer~! I hope i helped you~! Have an GREAT day too~! <\3
Wind, air that moves to the ground
Answer:
4) Van der waals forces
Explanation:
Krypton (Kr) belongs to the noble gas group and has fully filled valence orbitals. In the solid phase, Kr exists as a white solid with a face centered cubic structure.
Intermolecular forces of attraction from the strongest to the weakest include:
Ionic > hydrogen bonding > dipole-dipole > london dispersion
Kr is monoatomic and non-polar. When fully filled (stable) valence orbitals of 2 Kr atoms approach each other in close proximity they experience a repulsive force which prevents the formation of strong bonds. Thus, the only force of attraction in Kr is the long range weak Van Der Waals force also known as the london dispersion force.