Answer:
680 g/m is the molar mass for the unknown, non electrolyte, compound.
Explanation:
Let's apply the formula for osmotic pressure
π = Molarity . R . T
T = T° absolute (in K)
R = Universal constant gases
π = Pressure
Molarity = mol/L
As units of R are L.atm/mol.K, we have to convert the mmHg to atm
760 mmHg is 1 atm
28.1 mmHg is (28.1 .1)/760 = 0.0369 atm
0.0369 atm = M . 0.082 L.atm/mol.K . 293K
(0.0369 atm / 0.082 mol.K/L.atm . 293K) = M
0.0015 mol/L = Molarity
This data means the mol of solute in 1L, but we have 100mL so
Molarity . volume = mol
0.0015 mol/L . 0.1L = 1.5x10⁻⁴ mole
The molar mass will be: 0.102g / 1.5x10⁻⁴ m = 680 g/m
Answer:
Option B is correct.
Explanation:
An atom consist of electron, protons and neutrons. Protons and neutrons are present with in nucleus while the electrons are present out side the nucleus.
All these three subatomic particles construct an atom. A neutral atom have equal number of proton and electron. In other words we can say that negative and positive charges are equal in magnitude and cancel the each other. The number of protons or neutrons is the atomic number of an atom while sum of proton and neutrons is the mass number.
The beryllium atom have five neutrons, four protons and four electrons.
The option be is correct model of beryllium because it shows that there are four protons and five neutron in nucleus of beryllium atom and four electrons revolving around the nucleus.
Beryllium is alkaline earth metal.
It is present in group two.
Its atomic number is 4.
its atomic mass is 9 amu.
Answer:
I hate to not answer and have you repost this if you could repost it with the choices by clicking the arrow I can figure it out a lot faster and I'll copy and paste to show you that it's right
Explanation:
I'm good with history biology sum math so if you want to do what I asked and reposted I can give you the answers and I will show that they are correct I won't just guess like some people do just to get points cuz I don't care about points I just get on here to help people
Strong acid:dissolves and dissociates 1005 to produce protons (H+) 1. seven
strong acids: HCI, HBr, HI, HNO3, H2SO4, and HCIO3. ...
weak acid: dissolves but less than 100% dissociates to produce protons (H+) 1.