A) zeroes
P(n) = -250 n^2 + 2500n - 5250
Extract common factor:
P(n)= -250 (n^2 - 10n + 21)
Factor (find two numbers that sum -10 and its product is 21)
P(n) = -250(n - 3)(n - 7)
Zeroes ==> n - 3 = 0 or n -7 = 0
Then n = 3 and n = 7 are the zeros.
They rerpesent that if the promoter sells tickets at 3 or 7 dollars the profit is zero.
B) Maximum profit
Completion of squares
n^2 - 10n + 21 = n^2 - 10n + 25 - 4 = (n^2 - 10n+ 25) - 4 = (n - 5)^2 - 4
P(n) = - 250[(n-5)^2 -4] = -250(n-5)^2 + 1000
Maximum ==> - 250 (n - 5)^2 = 0 ==> n = 5 and P(5) = 1000
Maximum profit =1000 at n = 5
C) Axis of symmetry
Vertex = (h,k) when the equation is in the form A(n-h)^2 + k
Comparing A(n-h)^2 + k with - 250(n - 5)^2 + 1000
Vertex = (5, 1000) and the symmetry axis is n = 5.
Time:logs=time:logs
time/logs=time/logs
4hours:6logs=18hours:xlogs
4hours/6logs=18hours/xlogs
4/6=18/x
6/4=18/x
x=27
pick B,C,E
If a flight departs from Pittsburgh at 7:55 a.m. and arrives in San Diego at 9:20 a.m.,
How long is the flight?
SOLUTION
9. 20 am - 7. 55 am = 1 hour 25 mins
Answer:
3.8%
Step-by-step explanation:
90/2358=0.038
Answer
y=9/3x
Step-by-step explanation: