A=Lw
P=2L+2w
216=Lw
W=216/L...substitute to Perimeter equation
60=2L+2(216/L)
60L=2L^2 + 432
2L^2-60L+432=0
2(L^2 - 30L + 216)=0
2(L-18)(L-12)=0
L=12, W=18 or L=18, W=12
Step-by-step explanation:
(1 + cos θ + sin θ) / (1 + cos θ − sin θ)
Multiply by the reciprocal:
(1 + cos θ + sin θ) / (1 + cos θ − sin θ) × (1 + cos θ + sin θ) / (1 + cos θ + sin θ)
(1 + cos θ + sin θ)² / [ (1 + cos θ − sin θ) (1 + cos θ + sin θ) ]
(1 + cos θ + sin θ)² / [ (1 + cos θ)² − sin² θ) ]
Distribute and simplify:
(1 + cos θ + sin θ)² / (1 + 2 cos θ + cos² θ − sin² θ)
[ 1 + 2 (cos θ + sin θ) + (cos θ + sin θ)² ] / (1 + 2 cos θ + cos² θ − sin² θ)
(1 + 2 cos θ + 2 sin θ + cos² θ + 2 sin θ cos θ + sin² θ) / (1 + 2 cos θ + cos² θ − sin² θ)
Use Pythagorean identity:
(2 + 2 cos θ + 2 sin θ + 2 sin θ cos θ) / (sin² θ + cos² θ + 2 cos θ + cos² θ − sin² θ)
(2 + 2 cos θ + 2 sin θ + 2 sin θ cos θ) / (2 cos² θ + 2 cos θ)
(1 + cos θ + sin θ + sin θ cos θ) / (cos² θ + cos θ)
Factor:
(1 + cos θ + sin θ (1 + cos θ)) / (cos θ (1 + cos θ))
(1 + cos θ)(1 + sin θ) / (cos θ (1 + cos θ))
(1 + sin θ) / cos θ
Answer:
3.5 in.
Step-by-step explanation:
17.5 ÷ 5 = 3.5
-2x + 5 = -1
subtract 5 from both sides: -2x = -6
divide each side by -2: x = 3
plug in 3: 5(3)
multiply: 15
the value of 5x is 15.
<h3>
Answer: C) 3</h3>
=========================================================
Explanation:
f(x) is the outer function, so the final output -8 corresponds to f(x)
We see that f(-4) = -8 in the first column of the table. I'm starting with the output and working my way backward to get the input. So we started with -8 and worked back to -4.
Then we move to the g(x) function to follow the same pattern: start with the output and move to the input. We start at -4 in the g(x) bubble and move to 3 in the x bubble.
In short, g(3) = -4
So,
f(g(x)) = f(g(3)) = f(-4) = -8
We see that x = 3 leads to f(g(x)) = -8