Answer:
Considering the half-life of 10,000 years, after 20,000 years we will have a fourth of the remaining amount.
Explanation:
The half-time is the time a radioisotope takes to decay and lose half of its mass. Therefore, we can make the following scheme to know the amount remaining after a period of time:
Time_________________ Amount
t=0_____________________x
t=10,000 years____________x/2
t=20,000 years___________x/4
During the first 10,000 years the radioisotope lost half of its mass. After 10,000 years more (which means 2 half-lives), the remaining amount also lost half of its mass. Therefore, after 20,000 years, the we will have a fourth of the initial amount.
The balanced chemical equation for the above reaction is as follows;
2Ca + O₂ --> 2CaO
stoichiometry of Ca to O₂ is 2:1
this means that 2 mol of Ca reacts with 1 mol of O₂.
If O₂ is the limiting reactant,
4 mol of O₂ should react with (4x2) - 8 mol of Ca
however only 7.43 mol of Ca is present. Therefore Ca is the limiting reactant.
7.43 mol of Ca reacts with - 7.43/2 = 3.715 mol of O₂
therefore there's excess O₂₂ remaining after the reaction
Since Ca is the limiting reactant, it is fully used up in the reaction and there is no Ca remaining after the reaction is completed.
Answer: C) Elements and pure compounds are homogeneous materials because they have a uniform composition throughout.
Explanation: Element is a pure substance which is composed of atoms of similar elements. Compound is a pure substance which is made from atoms of different elements combined together in a fixed ratio by mass.
Elements are compounds form homogeneous materials as they have uniform composition throughout and the components are evenly distributed throughout the material.
Mixtures are heterogeneous materials as they do not have uniform composition and the components are not evenly distributed throughout the material.