Answer:
Compound 3 is a clear liquid with a strong pleasantly fruity smell. If cooled it freezes at about −10°C. In the solid state it does not conduct electricity. ... It dissolves slightly in water, and a solution of 2g in 100mL of water doesn't change the electrical conductivity of the water.
Answer:
a) 
b) 
Explanation:
Equation of reaction:

Initial pressure 3 1 0
Pressure change 2P 1P 2P
Total pressure = (3-2P) + (1-P) + (2P)
Total Pressure = 3.75 atm
(3-2P) + (1-P) + (2P) = 3.75
4 - P = 3.75
P = 4 - 3.75
P = 0.25 atm
Let us calculate the pressure of each of the components of the reaction:
Pressure of XO2 = 3 - 2P = 3 - 2(0.25)
Pressure of XO2 =2.5 atm
Pressure of O2 = 1 - P = 1 -0.25
Pressure of O2 = 0.75 atm
Pressure of XO3 = 2P = 2 * 0.25
Pressure of XO3 = 0.5 atm
From the reaction, equilibrium constant can be calculated using the formula:
![K_{p} = \frac{[PXO_{3}] ^{2} }{[PXO_{2}] ^{2}[PO_{2}] }](https://tex.z-dn.net/?f=K_%7Bp%7D%20%3D%20%5Cfrac%7B%5BPXO_%7B3%7D%5D%20%5E%7B2%7D%20%7D%7B%5BPXO_%7B2%7D%5D%20%5E%7B2%7D%5BPO_%7B2%7D%5D%20%7D)

Standard free energy:

b) value of k−1 at 27 °C, i.e. 300K



The correct answer is:
C. valence.
Explanation:
The valence or valency of an element is a stratagem of its connecting power with other atoms when it makes chemical compounds or molecules.
A valence electron is an outer shell electron that is connected with an atom, and that can compete in the formation of a chemical bond if the outer shell is not closed; in a single covalent bond, both atoms in the bond provide one valence electron in order to form a shared pair
The enthalpy of reaction (ΔH) of the above chemical reaction is equal to -143 kJ/mol.
<h3>What is a chemical reaction?</h3>
A chemical reaction can be defined as a chemical process that involves the continuous transformation (rearrangement) of the ionic, atomic or molecular structure of a chemical element by breaking down and forming chemical bonds, in order to produce a new chemical compound while new bonds are formed.
<h3>What is a balanced equation?</h3>
A balanced chemical equation can be defined as a chemical equation wherein the number of atoms on the reactant (left) side is equal to the number of atoms on the product (right) side.
Next, we would write the properly balanced chemical equation for this chemical reaction:
3/2O₂ -----> 2/2O₃
Therefore, the enthalpy of reaction (ΔH) of the above chemical reaction is half the enthalpy of reaction (ΔH) of the initial chemical reaction:
Enthalpy of reaction (ΔH) = ½ × -286 kJ/mol
Enthalpy of reaction (ΔH) = -143 kJ/mol.
Read more on enthalpy here: brainly.com/question/12993630
#SPJ1