There should be 22 figures .
Answer is: the approximate freezing point of a 0.10 m NaCl solution is -2x°C.
V<span>an't
Hoff factor (i) for NaCl solution is approximately 2.
</span>Van't Hoff factor (i) for glucose solution is 1.<span>
Change in freezing point from pure solvent to
solution: ΔT = i · Kf · m.
Kf - molal freezing-point depression constant for water is 1,86°C/m.
m - molality, moles of solute per
kilogram of solvent.
</span>Kf and molality for this two solutions are the same, but Van't Hoff factor for sodium chloride is twice bigger, so freezing point is twice bigger.
During a collision, the person would most likely experience the same conditions with or without a seatbelt.
To calculate the number of molecules in <span>6.00 moles of hydrogen sulfide, H2S, the equivalence factor used is Avogadro's number equal to (6.022 x 10^23 molecules/mole). The answer is 6</span>.00 moles of hydrogen sulfide * <span>(6.022 x 10^23 molecules/mole) equal to 3.61 x10^24 molecules.</span>