According to Newton's second law, the force applied to an object is equal to the product between the mass of the object and its acceleration:

where F is the magnitude of the force, m is the mass of the object and a its acceleration.
In this problem, the object is the insect, with mass

. The acceleration of the insect is

, therefore we can calculate the force exerted by the car on the insect:

How do we find the force exerted by the insect on the car?
According to Newton's third law (known as action-reaction law), when an object A exerts a force on an object B, object B also exerts a force equal and opposite on object A. Therefore, the force exerted by the insect on the car is equal to the force exerted by the car on the object, so it is 0.01 N.
We have that for the Question "A 2kg book is held against a vertical wall. The <em>coefficient </em>of friction is 0.45. What is the minimum force that must be applied on the <em>book</em>, perpendicular to the wall, to prevent the book from slipping down the wal" it can be said that the minimum force that must be applied on the <em>book is</em>
From the question we are told
A 2kg book is held against a vertical wall. The <em>coefficient </em>of friction is 0.45. What is the minimum force that must be applied on the <em>book</em>, perpendicular to the wall, to prevent the book from slipping down the wal
Generally the equation for the Force is mathematically given as

F=44N
Therefore
the minimum force that must be applied on the <em>book is</em>
F=44N
For more information on this visit
brainly.com/question/23379286
Answer:


Explanation:
m = Mass of proton = 
v = Speed of proton = 0.5c = 
Circumference of the colider is 7 km


Centripetal acceleration is 

Force on protons is 
Answer:
1 my brother say that
Explanation:
i know my brother said it
The snail’s speed is 0.001042. Hope this helps!